• 제목/요약/키워드: Axial compression test

검색결과 339건 처리시간 0.023초

Lateral deformation capacity and stability of layer-bonded scrap tire rubber pad isolators under combined compressive and shear loading

  • Mishra, Huma Kanta;Igarashi, Akira
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.479-500
    • /
    • 2013
  • This paper presents the experimental as well as analytical study conducted on layer-bonded scrap tire rubber pad (STRP) isolators to develop low-cost seismic isolators applicable to structures in developing countries. The STRP specimen samples were produced by stacking the STRP layers one on top of another with the application of adhesive. In unbonded application, the STRP bearings were placed between the substructure and superstructure without fastening between the contact surfaces which allows roll-off of the contact supports. The vertical compression and horizontal shear tests were conducted with varying axial loads. These results were used to compute the different mechanical properties of the STRP isolators including vertical stiffness, horizontal effective stiffness, average horizontal stiffness and effective damping ratios. The load-displacement relationships of STRP isolators obtained by experimental and finite element analysis results were found to be in close agreement. The tested STRP samples show energy dissipation capacity considerably greater than the natural rubber bearings. The layer-bonded STRP isolators serve positive incremental force resisting capacity up to the shear strain level of 150%.

Mechanical Behavior of Slender Concrete-Filled Fiber Reinforced Polymer Columns

  • 최석환;이명;이성우
    • 콘크리트학회논문집
    • /
    • 제16권4호
    • /
    • pp.565-572
    • /
    • 2004
  • The mechanical behavior of concrete-filled glass fiber reinforced polymer columns is affected by various factors including concrete strength, stiffness of tube, end confinement effect, and slenderness ratio of members. In this research the behavior of slender columns was examined both experimentally and analytically. Experimental works include 1) compression test with 30cm long glass fiber composite columns under different end confinement conditions, 2) uni-axial compression test for 7 slender columns, which have various slenderness ratios. Short-length stocky columns gave high strength and ductility revealing high confinement action of FRP tubes. The strength increment and strain change were examined under different end confinement conditions. With slender columns, failure strengths, confinement effects, and stress-strains relations were examined. Through analytical work, effective length was computed and it was compared with the amount of reduction in column strength, which is required to predict design strength with slender specimens. This study shows the feasibility of slender concrete-filled glass fiber reinforced polymer composite columns.

실험적 연구를 통한 퇴적암의 한계변형률 특성에 관한 연구 (Experiments Study on Critical Strain Properties of Sedimentary Rocks)

  • 이재호;김영수;김광일;박장호;박시현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.211-219
    • /
    • 2008
  • The hazard warning levels are necessary for the rational design and safety construction of underground space, as mountain and urban tunnel. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the critical strain of rock mass, which is defined as a ratio between uni-axial compressive strength and the Young's modulus. The concept of critical strain guidelines is introduced in this study for the assessment of tunnel safety during excavation. Moreover, in this paper, the critical strain properties of sedimentary rock in Korea has investigated and analysed in detail by Lab. test, as the uniaxial compression tests. Finally, critical strain properties of sedimentary rock is discussed the relationship of failure strain values, uniaxial compression strengths and Young's modulus.

  • PDF

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.

교량기초 하부에 위치한 터널의 지보방법에 따른 변위거동 (Displacement Behavior of Tunnel under Bridge Abutment due to Supporting Systems)

  • 유남재;박병수;정길수;김승렬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.613-620
    • /
    • 2005
  • This research is experimental paper to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

터널의 지보방법에 관한 원심모형실험(遠心模型實驗) (The Support Types of the Tunnel for Centrifuge Model)

  • 유남재;이명욱;박병수
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.199-209
    • /
    • 2002
  • This research is experimental thesis to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

중심압축력을 받는 일반구조용 강관의 구조성능에 관한 연구 (A Study on the Structural Property of Structural Steel Tubes under Axial Compression)

  • 김종락;이은택;이소연;백기열
    • 한국강구조학회 논문집
    • /
    • 제20권3호
    • /
    • pp.437-444
    • /
    • 2008
  • 현재 국내에 유통되고 있는 강관은 국내산과 수입산이 혼용되고 있으며, 수입산 강관은 가격경쟁 면에서 그 수요가 꾸준히 증가하고 있다. 본 연구는 국내에 유통되고 있는 일반구조용 원형강관 및 비계용 강관에 대하여 소재의 인장시험과 Stub -column 압축시험 및 기둥의 좌굴실험을 통하여 일반구조용 강관의 기계적 성질과 기둥의 강도 및 거동을 파악하고자 한다. 또한 한계상태설계법의 기준식과 복수강도곡선의 적용으로 이론값과 실험값을 비교하여 기계적 요구 성능 및 적합성 여부를 조사하고, 설계기준에 대한 기초자료를 확보하고자 한다. 단주압축 실험결과 관경두께비를 만족하는 시험체의 경우에는 최대내력에 도달한 후 서서히 내력이 저하되는 결과를 나타내었다. 기둥좌굴 실험결과, 최대내력은 일정한 좌굴내력 범위를 나타내었으며 전반적으로 한계상태설계법의 기준곡선에 만족하는 결과를 나타내었다.

횡보강근이 없는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도 (Behavior and Capacity of Compression Lap Splice in Unconfined Concrete with Compressive Strength of 40 and 60 MPa)

  • 천성철;이성호;오보환
    • 콘크리트학회논문집
    • /
    • 제21권3호
    • /
    • pp.291-302
    • /
    • 2009
  • 현행 기준식에 따르면 초고강도콘크리트에서는 철근 인장이음길이보다 압축이음길이가 더 길어지는 현상이 발생된다. 초고강도콘크리트의 경제적 실용화를 위해 합리적인 압축이음강도의 평가가 필요하다. 이를 위해 압축이음의 거동 특성을 분석하고 영향인자를 도출하였으며, 설계강도 40, 60 MPa 콘크리트에 대한 압축이음 실험을 수행하였다. 압축이음강도는 부착과 지압으로 구성되고, 부착과 지압의 복합 거동에 의해 발현되므로, 압축이음 거동특성 및 강도평가를 위해서는 부착과 지압이 함께 존재하는 상태에서의 연구가 수행되어야한다. 인장이음과 달리 압축이음은 이음길이가 짧고 지압의 존재로 인해 콘크리트 강도의 영향이 크다. 실험결과 압축이음강도는 콘크리트의 제곱근에 비례하는 것으로 평가되었다. 부착과 지압 모두 주변 콘크리트의 응력상태에 따라 결정되는데, 콘크리트의 축방향 응력이 높기 때문에 철근 순간격 증가에 따른 이음강도 증가는 거의 없다. 지압강도는 이음길이와 철근 순간격에 무관하며, 콘크리트 강도의 제곱근의 함수로 표현할 수 있다. 파괴양상이 측면파열파괴와 유사하므로 지압강도는 앵커의 측면파열파괴 강도식을 활용하여 평가가 가능하다. 부착에 의해 발현되는 강도는 인장이음의 경우와 유사하므로, 인장이음강도에 비해 향상된 압축이음강도는 단부 지압효과로 설명될 수 있다.

핵연료집합체 기계적특성 시험시설 구축과 기능시험 (Construction and Functional Tests of Fuel Assembly Mechanical Characterization Test Facility)

  • 이강희;강흥석;윤경호;양재호
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.11-16
    • /
    • 2016
  • Fuel assembly's mechanical characterization test facility (FAMeCT) in KAERI was constructed with upgraded functional features such as increased loading capacity, underwater vibration testing and severe earthquake simulation for extended fuel design guideline. This facility is designed and developed to provide out-pile fuel data for accident analysis model and fuel licensing. Functional tests of FAMeCT were performed to confirm functionality, structural integrity, and validity of newly-built fuel assembly mechanical test facility. Test program includes signal check of data acquisition system, load delivering capacity using real-sized fuel assemblies and a standard loading cylindrical rigid specimen. Fuel assembly's lateral bending test was carried out up to 30 mm of pull-out displacement. Limit case axial compression loading test up to 33 kN was performed to check structural integrity of UCPS (Upper Core Plate Simulator) support frame. Test results show that all test equipment and measurement system have acceptable range of alignment, signal to noise ratio, load carrying capacity limit without loss of integrity. This paper introduces newly constructed fuel assembly's mechanical test facility and summarizes results of functional test for the mechanical test equipment and data acquisition system.

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • 정태곤;정용훈;이수원;양재웅;정재영;박광민;강관수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF