• 제목/요약/키워드: Axial Vibration

검색결과 686건 처리시간 0.025초

전단변형을 고려한 불연속 단면을 갖는 변화곡률 아치의 자유진동 해석 (Free Vibration Analysis of Stepped Noncircular Arches with Shear Deformation)

  • 오상진;모정만;진태기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.768-771
    • /
    • 2005
  • The purpose of this paper is to investigate the free vibration of stepped noncircular arches. Taking into account the effects of axial deformation, rotatory inertia and shear deformation, the governing differential equations are solved numerically for the elliptic and sinusoidal geometries with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. The lowest four natural frequencies are presented as functions of four non-dimensional system parameters: the arch rise to span length ratio, the slenderness ratio, the section ratio, and the discontinuous sector ratio.

  • PDF

An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration

  • Lee, Minsik;Park, Ilwook;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.551-561
    • /
    • 2017
  • As FGM (functionally graded material) bars which vibrate in axial or longitudinal direction have great potential for applications in diverse engineering fields, developing a reliable mathematical model that provides very reliable vibration and wave characteristics of a FGM axial bar, especially at high frequencies, has been an important research issue during last decades. Thus, as an extension of the previous works (Hong et al. 2014, Hong and Lee 2015) on three-layered FGM axial bars (hereafter called FGM bars), an enhanced spectral element model is proposed for a FGM bar model in which axial and radial displacements in the radial direction are treated more realistic by representing the inner FGM layer by multiple sub-layers. The accuracy and performance of the proposed enhanced spectral element model is evaluated by comparison with the solutions obtained by using the commercial finite element package ANSYS. The proposed enhanced spectral element model is also evaluated by comparison with the author's previous spectral element model. In addition, the effects of Poisson's ratio on the dynamics and wave characteristics in example FGM bars are numerically investigated.

동일 주파수 성분의 디젤엔진과 프로펠러 기진력 위상차 규명을 이용한 선박 진동 제어 (Ship Vibration Control Utilizing the Phase Difference Identification of Two Excitation Components with the Same Frequency Generated by Diesel Engine and Propeller)

  • 성혜민;김기선;주원호;조대승
    • 대한조선학회논문집
    • /
    • 제57권3호
    • /
    • pp.160-167
    • /
    • 2020
  • A two-stroke diesel engine and a propeller normally adopted in large merchant ships are regarded as major ship vibration sources. They are directly connected and generate various excitation components proportional to the rotating speed of diesel engine. Among the components, the magnitude of two excitation components with the same frequency generated by both engine and propeller can be compensated by the adjustment of their phase difference. It can be done by the optimization of propeller assembly angle but requires a number of burdensome trials to find the optimal angle. In this paper, the efficient estimation method to determine optimal propeller assembly angle is proposed. Its application requires the axial vibration measurement in sea trial and the numerical vibration analysis for propulsion shafting which can be substituted by additional vibration measurement after one-trial modification of propeller assembly angle. In order to verify the validity of the proposed method, the phase difference between two fifth order excitation components generated by both diesel engine and propeller of a real ship is calculated by the finite element analysis and its result is indirectly validated by the comparison of axial vibration responses at intermediate shaft obtained by the numerical analysis and the measurement in sea trial. Finally, it is numerically confirmed that axial vibration response at intermediate shaft at a resonant speed can be decreased more than 87 % if the optimal propeller assembly angle determined by the proposed method is applied.

3축 가속도 센서 기반의 무선 진동 측정 시스템 (Wireless Vibration Measurement System Using a 3-Axial Accelerometer Sensor)

  • 유주연;박근철;전아영;김철한;김윤진;노정훈;전계록
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.131-136
    • /
    • 2011
  • In this study, a compact wireless vibration measurement system was developed using a 3-axial accelerometer in order to evaluate the vibration stimulation system. A low power microprocessor chip integrated with 2.4 GHz RF transceiver was used for the wireless data communication. To evaluate the system, the frequencies and accelerations from the vibration stimulation system were measured using an LVDT sensor and a vibration measurement system. The average frequency difference by the measurement system was less than 0.1 Hz, and the standard deviation of frequencies estimated by the LVDT sensor and the accelerometer was below 0.08 Hz. The developed system was applied to access a vibration stimulation system for the future study. The average acceleration difference of the central and peripheral point of the stimulation system was less than 0.0005 g(1 g=9.8 $m/s^2$), and the standard deviation of the acceleration was below 0.004 g, which shows the usefulness of the wireless vibration measurement system.

선박 추진축계 종.비틂 연성 비감쇠 고유진동 감도해석 (The Sensitivity Analysis of Coupled Axial and Torsional Undamped Free Vibration of Ship Propulsion Shafting)

  • 김연호;조대승
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.48-55
    • /
    • 2001
  • 본 논문에서는 선박 추진축계의 중간 축과 프로펠러 축 직경 변경시에 추진축계 고유진동특성을 효율적으로 산정하고, 선박 주기관 연속운항 금지구간 설정에 영향을 미치는 비틂공진점의 최적 설계를 도모할 수 있는 추진축계 종 비틂 연성 고유진동 감도해석방법을 제시하였다. 제시된 방법의 타당성과 효율성은 2척의 실선 추진축계을 대상으로 중간 축 프로펠러 축 직경에 대한 고유진동수 감도해석을 수행하여 검토하였다. 아울러, 선급 규정을 충족시키는 범위 안에서 중간축 및 프로펠러 축의 인장강도와 축경을 변화할 경우의 종 비틂 연성 고유진동수 변화량을 고찰하였다.

  • PDF

A Finite Element Formulation for Vibration Analysis of Rotor Bearing System

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.37-44
    • /
    • 1996
  • To get accurate vibration analysis of rotor-bearing systems, finite element models of high speed rotating shaft, unbalance disk, and fluid film journal bearing are developed. The study includes the effects of rotary inertia, gyroscopic moment, damping, shear deformation, and axial torque in the same model. It does not include the axial force effect, but the extension is straighforward. The finite elements developed can be used in the analysis design of any type of multiple rotor bearing system. To show the accuracy of the models, numerical examples are demonstrated.

  • PDF

대형 축류팬 저소음화를 위한 최적설계 연구 (The Study about the Optimizaion of the low noise axial fan)

  • 신형기;이수갑;천승현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.365.1-365
    • /
    • 2002
  • 저소음 팬의 설계는 팬 성능의 저감 없이 이루어져야 한다. 마라서 저소음 팬 설계는 기본적으로 다분야간 설계 최적화 또는 다목적 설계 최적화의 문제이다. 본 연구에서는 이러한 요구를 수행하기 위해 반응면 기법을 저소음 축류 팬 설계에 적용하여 보았다. 또한 이러한 설계 단계에서 필요한 수백가지 시험 결과를 효과적으로 구하기 위해 효율적인 유동 해석 툴과 소음 해석 툴을 개발하여 적용시켰다. (중략)

  • PDF

축 방향으로 이동하는 티모센코보의 동특성 해석 (Dynamics of an Axially Moving Timoshenko Beam)

  • 김주홍;오형미;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.1066-1071
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of the present spectral element is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are investigated, analytically and numerically.

  • PDF

회전 및 굽힘 스프링 기구로 연속 지지된 핵연료봉의 진동연구 (A Study on the Vibration Behavior of the Fuel rods Continuously Supported by a Rotatory and Bent Spring System)

  • 강흥석;송기남;윤경호;정연호;임정식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.454-460
    • /
    • 1998
  • The vibration behavior of fuel rods has been analyzed by FEM in consideration of axial force and support spring constants. The axial compression force on the fuel rod in reactor decreases with the fuel rod burnup, and its decrease makes the natural frequencies of fuel rod considerably increase. The change of support spring constant can contribute to the remarkable change of the mode shapes, but not greatly to the natural frequencies. The reaction forces of support springs are obtained from normalizing the lst mode with the max. 0.2 mm displacement. The calculated reaction forces are larger than the previous results obtained by disregarding the deflections of the support springs.

  • PDF

각종 매설관의 강제진동거동에 관한 연구 (A Study on the Forced Vibration Responses of Various Buried Pipelines)

  • 정진호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1334-1339
    • /
    • 2006
  • Dynamic response of buried pipelines both in the axial and the transverse directions on concrete pipe and steel pipe, FRP pipe were investigated through a forced vibration analysis. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF