• 제목/요약/키워드: Axial Stress Ratio

Search Result 273, Processing Time 0.029 seconds

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

Experimental Study and Confinement Analysis on RC Stub Columns Strengthened with Circular CFST Under Axial Load

  • Liang, Hongjun;Lu, Yiyan;Hu, Jiyue;Xue, Jifeng
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1577-1588
    • /
    • 2018
  • As the excellent mechanical performance and easy construction of concrete filled steel tubes (CFST) composite structure, it has the potential to be used to strengthen RC pier columns. Therefore, tests were conducted on 2 reinforcement concrete (RC) stub columns and 9 RC columns strengthened with circular CFST under axial loading. The test results show that the circular CFST strengthening method is effective since the mean bearing capacity of the RC columns is increased at least 3.69 times and the ductility index is significantly improved more than 30%. One of the reasons for enhancement is obvious confinement provided by steel tube besides the additional bearing capacity supplied by the strengthening materials. From the analysis of the enhancement ratio, the strengthening structure has at least an extra 20% amplification except for taking full advantage of the strength of the strengthening material. Through the analysis of confining stress provided by steel tube and the stress-strain relationship of confined concrete, it is found that the strength of the core concrete can be increased by 21-33% and the ultimate strain can be enhanced to beyond $15,000{\mu}{\varepsilon}$.

Design of Multi-stack Axial Flux Permanent Magnet Synchronous Generator Considering Electromagnetic and Mechanical Characteristics (전자기 및 기계적 특성을 고려한 다중 적층형 AFPMSG의 설계)

  • Syed, Qurban Ali Shah;You, Young-Min;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1043-1044
    • /
    • 2011
  • This paper discusses the electromagnetic and mechanical design considerations to improve the design accuracy and power to mass ratio of multi-stack axial flux permanent magnet synchronous generator (AFPMSG). Design accuracy of multi-stack AFPMSG for direct drive wind turbine application is improved by considering magnetic flux leakages and fringing effect. FEM structural analysis is utilized to increase power to mass ratio of three-stack AFPMSG by reducing the rotor yoke thickness considering magnetic and centrifugal forces and Von Mises stress distribution.

  • PDF

Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement

  • Chen, Zongping;Xu, Ruitian
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • The axial compression behavior of nine self-compacting concrete columns confined with CFRP-PVC spirals was studied. Three parameters of spiral reinforcement spacing, spiral reinforcement diameter and height diameter ratio were studied. The test results show that the CFRP strip and PVC tube are destroyed first, and the spiral reinforcement and longitudinal reinforcement yield. The results show that with the increase of spiral reinforcement spacing, the peak bearing capacity decreases, but the ductility increases; with the increase of spiral reinforcement diameter, the peak bearing capacity increases, but has little effect on ductility, and the specimen with the ratio of height to diameter of 7.5 has the best mechanical properties. According to the reasonable constitutive relation of material, the finite element model of axial compression is established. Based on the verified finite element model, the stress mechanism is revealed. Finally, the composite constraint model and bearing capacity calculation method are proposed.

A Study on the Exhaust Flow Characteristics of the Gun Type Burner according to the Ratio of Airtube Diameter (에어튜브의 직경비에 따른 건타입 버너의 출구 유동특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.76-81
    • /
    • 2015
  • Swirl flow has an impact on the stabilization of the flame by the recirculation flow, improvement of the combustion efficiency. The swirl flow in the gun type burner is created by the spinner which is inside the airtube that guide the combustion air. Burner has generally the combustion device composed electronic spark plug, injection nozzle, combustion device adaptor, and spinner. These inner components change the air flow behavior passing through airtube. So, this study analyzed exhaust flow characteristics of the gun type burner according to the ratio of airtube diameter. Turbulence characteristics by the spinner was mean velocity, turbulence intensity, kinetic energy, shear stress and flattness factor of the air flow of axial direction and tangential direction from the exit of the airtube.

Damping determination of FRP-confined reinforced concrete columns

  • Li, Xiaoran;Wang, Yuanfeng;Su, Li
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.163-174
    • /
    • 2014
  • Damping as a material property plays an important role in decreasing dynamic response of structures. However, very little is known about the evaluation and application of the actual damping of Fiber Reinforced Polymer Confined Reinforced Concrete (FRP-C RC) material which is widely adopted in civil engineering at present. This paper first proposes a stress-dependent damping model for FRP-C RC material using a validated Finite Element Model (FEM), then based on this damping-stress relation, an iterative scheme is developed for the computations of the non-linear damping and dynamic response of FRP-C RC columns at any given harmonic exciting frequency. Numerical results show that at resonance, a considerable increase of the loss factor of the FRP-C RC columns effectively reduces the dynamic response of the columns, and the columns with lower concrete strength, FRP volume ratio and axial compression ratio or higher longitudinal reinforcement ratio have stronger damping values, and can relatively reduce the resonant response.

The Undrained Shear Strength Characteristics of Mixed Soil with Oyster Shells (굴패각 혼합토의 비배수 전단강도 특성)

  • 송영진;김기영;문홍득
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.7-14
    • /
    • 2003
  • In this study, undrained shear test was performed$K_o$ consolidation in order to study the shear strength characteristics of oysters-marine clay mixtures for three mixed ratios(0%, 25% and 50%). And, in order to study shear strength characteristics of oysters-marine clay mixtures, three different effective vertical stresses(200, 300 and 400kPa) were applied for the $K_o$ consolidation tests. In addition three different axial strain rates(0.005%/min, 0.05%/min, 0.5%/min) were applied for the case of effective vertical stress, 300kPa. According to experimental results, the more mixed ratios were increased, the more deviator stress was increased by crushing effect of oysters particles. especially, when effective vertical stress is 300kPa and mixed ratio increase from 25% to 50%, Test shows the increase of shear strength. But axial strain rate was not effect on the undrained shear strength. In the comparison and analysis that are based on the values of tests on the oysters-marine clay mixtures and the Mayne & Bishop's empiric formula, the undrained shear strength ratio shows a similar pattern of the tests. But for the prediction of the coefficient of the pore water pressure, the value of empiric formula shows more overestimated than the values of the tests at 0%, mixture ratio.

Numerical investigations on breakage behaviour of granular materials under triaxial stresses

  • Zhou, Lunlun;Chu, Xihua;Zhang, Xue;Xu, Yuanjie
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.639-655
    • /
    • 2016
  • The effect of particle breakage and intermediate principal stress ratio on the behaviour of crushable granular assemblies under true triaxial stress conditions is studied using the discrete element method. Numerical results show that the increase of intermediate principal stress ratio $b(b=({\sigma}_2-{\sigma}_3)/({\sigma}_1-{\sigma}_3))$ results in the increase of dilatancy at low confining pressures but the decrease of dilatancy at high confining pressures, which stems from the distinct increasing compaction caused by breakage with b. The influence of b on the evolution of the peak apparent friction angle is also weakened by particle breakage. For low relative breakage, the relationship between the peak apparent friction angle and b is close to the Lade-Duncan failure model, whereas it conforms to the Matsuoka-Nakai failure model for high relative breakage. In addition, the increasing tendency of relative breakage, calculated based on a fractal particle size distribution with the fractal dimension being 2.5, declines with the increasing confining pressure and axial strain, which implies the existence of an ultimate graduation. Finally, the relationship between particle breakage and plastic work is found to conform to a unique hyperbolic correlation regardless of the test conditions.

Evaluation of Characteristics of Shear Strength and Poisso's Ratio through Triaxial and Bender Element Tests (벤더엘리먼트와 삼축시험을 통한 모래의 전단강도 및 포아송비 특성 규명)

  • Yoo, Jin-Kwon;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this paper, isotropically consolidated drained triaxial compression test device installed with bender elements is used to measure stress, stain, and shear wave velocity, from which the characteristics of shear strength and Poisson'ratio are investigated. The results show that there is a unique relationship between maximum shear modulus determined from shear wave velocity and effective vertical stress at failure, which is defined as the sum of vertical and radial stresses at failure. The correlation is very useful since it is possible to predict the shear strength and internal friction angle from shear wave velocity. In addition, Poisson's ratio is determined from measured axial and volumetric strains. It is demonstrated that the range of measured Poisson's ratio is between 0.15 and 0.6, and increases with the axial strain. The ratios at axial strains smaller than 0.2% corresponds to the range recommended in design codes, which are approximately from 0.3~0.35. However, at axial strains exceeding 1%, the measured ratios are between 0.5 and 0.6. It is therefore shown that use of ratios commonly used in practice will result in pronounced underestimation at large strains.

Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes (증기발생기 전열관에서의 응력부식 균열성장해석)

  • Shin, K.I.;Park, J.H.;Joo, J.W.;Shin, E.S.;Kim, H.D.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.19-24
    • /
    • 2000
  • Stress corrosion crack growth is simulated after assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noticed that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF