• Title/Summary/Keyword: Axial Flow Pump

Search Result 126, Processing Time 0.029 seconds

Study for the Increase of Micro Regenerative Pump Head

  • Horiguchi, Hironori;Wakiya, Keisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.189-196
    • /
    • 2009
  • The effect of inlet and outlet blade angles on a micro regenerative pump head was examined in experiments. The pump head was little increased by changing the blade angles compared with the original pump with the inlet and outlet blade angles of 0 degree. The effect of the axial clearance between the impeller and the casing on the pump head was also examined. The head was increased largely by decreasing the axial clearance. The computation of the internal flow was performed to clarify the cause of the increase of the pump head due to the decrease of the clearance. The local flow rate in the casing decreased as the leakage flow rate through the axial clearance decreased due to the decrease of the clearance. It was found that the larger head in the smaller clearance was just caused by the smaller local flow rate in the casing. In the case of the smaller clearance, the smaller local flow rate caused the smaller circumferential velocity near the front and rear sides of the impeller. This caused the increase of the angular momentum in the casing and the head.

Analysis of Pulsating Flow in a Swash Plate Type Piston Pump and Transmission Line (사판식 피스톤 펌프-관로계에서의 맥동류 해석)

  • Choi, Young-Hak;Lee, Ill-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.45-49
    • /
    • 2000
  • Vibration and noise problem in a hydraulic system became one of very important factors in evaluating the performance of a hydraulic system. It is known that vibration and noise in a hydraulic system is directly related to flow pulsation in the hydraulic pump in the system. This study investigated a modeling and simulation technique for pulsating flow in a swash plate type axial piston pump. The key design factors of the pump related to flow pulsation phenomenon of the pump are the physical parameters for notches on the valve plate of the pump. By the numerical analysis, effects of the physical parameters of the notch on the flow pulsation was elucidated.

  • PDF

Flow and Pressure Ripple Characteristics of Hydrostatic Transmissions (유압전동장치의 유량 압력맥동 특성)

  • 김도태;윤인균
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.120-126
    • /
    • 2001
  • This study deals with a flow and pressure ripple characteristics for a hydrostatic transmission(HST) consisting of a vari-able axial piston pump connected in an open loop to a fixed displacement axial piston motor. These flow ripples produced by pump and motor in HST interacts with the source impedances of the pump or motor and dynamic characteristics of the connected pipeline, and results in a pressure ripples, Pressure ripples. Pressure ripples in HSP is major source of vibration, which can lead to fatigue failure of components and cause noise. In this paper, the flow ripples generated by a swash plate type axial piston pump or motor in HST are measured by making use of hydraulic pipeline dynamics and the measured pressure data at two points along the pipeline. By using the self-checking functions, the validity of the method us investigated by comparison with the measured and estimated pressure ripples at the halfway section of the pipeline, and good agreement is achieved.

  • PDF

Internal Flow and Limiting Streamlines Observations of Contra-Rotating Axial Flow Pump at Partial Flow Rate

  • Watanabe, Satoshi;Momosaki, Shimpei;Usami, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.235-242
    • /
    • 2011
  • An application of contra-rotating rotors, in which a rear rotor is in tandem with a front one and these rotors rotate in the opposite direction each other, has been proposed against a demand for developing higher specific speed axial flow pump. One prototype rotors, which we have designed with a conventional method, has given the positive slope of head characteristic curve especially in the rear rotor. It is necessary to understand the internal flow behavior in the rear rotor to establish the design guideline for achieving higher and more reliable performance. In the present study, we carried out the experimental investigations of the internal flow field of the rear rotor, especially at the partial flow rate, by Laser Doppler Velocimetry (LDV) for the main flow and the limiting streamlines observation on rotor surfaces for the boundary layer flows.

An Investigation of the Pump Operating Characteristics as a Novel Control Index for LVAD Control

  • Choi Seongjin;Boston J. Robert;Antaki James F.
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.100-108
    • /
    • 2005
  • This work presents a novel control index to regulate the pump speed of an axial flow blood pump for the left ventricular assist device (LVAD). The control index is based on the characterization of pump operating conditions such as normal or suction status. The pump operating characteristics reveal that a certain pulsatility relationship between the pump pressure difference and the pump flow is a unique index to identify the pump operating status under the diverse pump operating environments.

A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing (축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발)

  • Ahn, C.B.;Moon, K.C.;Jeong, G.S.;Nam, K.W.;Lee, J.J.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

Study on the Control of the Axial Thrust of a Pump for Liquid Rocket Engine Turbopumps (액체로켓엔진 터보펌프용 펌프의 축추력 조절에 관한 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • The magnitude of the axial thrust acting on pump bearings has a great influence on the operational reliability and service life of a pump for turbopumps. In the present study, radial vanes are introduced to the pump casing to control the axial thrust by changing the cavity pressure between the impeller and the casing. To investigate the effect of the vanes on the axial thrust of the pump, experimental and computational studies were performed with and without the vanes. It is shown that the vanes reduce the cavity pressure by preventing the flow from rotating with the impeller. Experimental and computational results show similar trend for the axial thrust difference between two cases with and without the vanes. The results show that the cavity vanes are very effective in controlling the magnitude of the axial thrust.

Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART (일체형원자로 SMART 냉각재 순환펌프의 전산성능예측)

  • Kim M. H;Lee J. S;Park J. S;Kim J. I;Kim K. K
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.