• Title/Summary/Keyword: Axial Stratification

Search Result 15, Processing Time 0.019 seconds

Experimental Study on Axial Stratification Process and Its Effects (I) - Stratification in Engine -

  • Ohm, In-Yong;Park, Chan-Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1457-1469
    • /
    • 2002
  • This paper is the first of several companion papers, which investigate axial stratification process and its effects in an Sl engine. The axial stratification is very sophisticate phenomenon, which results from combination of fuel injection, port and in-cylinder flow and mixing. Because of the inherent unsteady condition in the reciprocating engine, it Is impossible to understand the mechanism through the analytical method. In this paper, the ports were characterized by swir and tumble number in steady flow bench test. After this, lean misfire limit of the engines, which had different port characteristic, were investigated as a function of swirl ratio and injection timing for confirming the existence of stratification. In addition, gas fuel was used for verifying whether this phenomenon depends on bulk air motion of cylinder or on evaporation of fuel. High-speed gas sampling and analysis was also performed to estimate stratification charging effect. The results show that the AFR at the spark plug and LML are very closely related and the AFR is the results of bulk air motion.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • O, Seung-Muk;Kim, Chang-Eop;Lee, Jin-Uk;Kim, Chang-Gi;Gang, Geon-Yong;Bae, Chung-Sik
    • 연구논문집
    • /
    • s.33
    • /
    • pp.5-16
    • /
    • 2003
  • Fuel distribution, combustion, and flame propagation characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine. Optically accessible single cylinder engine and laser diagnostics system were built for quantifying fuel concentration by acetone PLIF(planar laser induced fluorescence) measurements. In case of Otto cycle engine with large bore size, the engine knock and thermal stress of exhaust manifold are so critical that lean burn operation is needed to reduce the problems. It is generally known that fuel stratification is one of the key technologies to extend the lean misfire limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs2.3. Thus, strong swirl flow could promote desirable axial fuel stratification and, in result, may make flame propagation stable in the early stage of combustion.

  • PDF

Numerical Simulation of Stratified Taylor-Couette Flow (성층화된 Taylor-Couette 유동에 대한 전산해석적 연구)

  • Hwang Jong-Yeon;Yang Kyung-Soo;Kim Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.630-637
    • /
    • 2006
  • The flow regimes for a Taylor-Couette flow with a stable, axial stratification in density are investigated using numerical simulation. The flow configuration identical to that in the experiment of Boubnov, et al. (1995) is considered in the present research. The main objectives of this investigation are to verify the experimental and numerical results carried out by Boubnov, et al. and Hua et al. (1997), respectively, and to further study the detailed flow fields and flow bifurcations. With increasing buoyancy frequency of the fluid (N), the stratification-dominated flow regime, called the S-regime, is observed. It is also confirmed that the important effect of an axial density stratification is to stabilize the flow field. The present numerical results are in good agreement with Boubnov, et al. and Hua et al.'s observations.

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part I-Without Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part I-와류가 없는 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This paper is the first of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualization for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. For no swirl port, the axial penetration depends on the fuel injection timing. The fuel tends to remain in the upper region of the cylinder far from the spark plug and the distribution is not affected by the injection timing except 90 ATDC.

  • PDF

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

Effects of Port Masking on Part Load Performance: Part I - Lean Misfire Limit (포트 마스킹이 엔진의 부분부하 성능에 미치는 영향: Part I - 희박연소 한계)

  • 이원근;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.17-22
    • /
    • 2001
  • This paper is the first of companion papers, which investigate port-masking effects on lean misfire limit. Port-masking was applied to commercial SOHC 3-valve and DOHC 4-valve engine by inserting masking plates between manifold and port. To induce various conditions of stratification, six types of masking plates were applied. The masking plates were placed in the upstream of injector to prevent wall wetting and two ports were not separated to permit both fuel and air entering through masked port. The results were compared with those by conventional port throttling. The results show that lean misfire limit mainly depends on masking direction, that is, high lean misfire limit is achieved when the port near the spark plug is masked. The mechanism of stratification by masking is different from axial stratification by port throttling. In this case, the rich mixture entering through masked port plays a very important role in the stratification process.

  • PDF

Effects of Port Masking on Emission (포트 마스킹이 엔진의 배기에 미치는 영향)

  • Kim, Hyeong-Sig;Park, Chan-Jun;Ohm, In-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • To secure basic data for intake port design, effects of a port masking on the part load performance were investigated in a 4 valve SI engine. For this purpose, 9 kinds of masking, which have different shapes and masking ratio, are applied to the engine intake system. The characteristics of the performance were estimated through mixture response test at various engine load and speed. The results show that NOx emission, one of indexes for stratification, increases considerably in spite of retarded spark timing due to the stratification which is caused by unequal flow distribution between the two intake ports. The mechanism of stratification by masking is different from axial stratification and the fuel entering through masked port plays a very important role in this stratification process. In conclusion, the port masking method could be easily applied to engine intake system and be very effective for inducing the stratified charging without the change of port design.

Effects of Injection Timing on the Lean Misfire Limit in a SI Engine (가솔린 엔진의 연료분사시기가 희박가연한계에 미치는 영향에 관한 연구)

  • 엄인용;정경석;정인석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.97-103
    • /
    • 1997
  • Effects of fuel injection timing on the lean misfire limit of a sequential MPI SI engine has been investigated. To investigate the interaction of injection timing and intake flow characteristics, so called axial stratification phenomena, 4 kinds of different intake swirl port of the same combustion chamber geometry have been teated in a single cylinder engine test bench. And 2 kinds of fuel, gasoline and compressed natural gas(CNG), were used to see the effect of liquid fuel vaporization. Result shows that combination of port swirl and injection timing governs the lean misfire limit and lean misfire limit envelopes remain almost the same for a given ratio regardless of engine speed. It is also found that two phase flow has some effects on lean misfire limit.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an Sl Engine : Part II-With Low/Medium Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part II - 저/중 와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • This paper is the second of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected Sl engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray fur the visualization purposes. This results have been compared with steady flow concentration measurement. For low/medium swirl port, the early injection makes such a fuel distribution state that is upper-rich, middle-lean and lower-rich along the combustion chamber and cylinder by tumbling motion. On the other hand, the late injection induces upper-rich, middle-lean and lower-rich state due to the short fuel penetration.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part III-With High Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part III - 고와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.18-26
    • /
    • 2001
  • This paper is the third of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. In high swirl port, the most fuel remains at combustion chamber and upper cylinder region without being affected by injection timing. The macro-distributed state is not changed but the difference of the amount of fuel around the spark plug varies according to injection timing, which determines LML.

  • PDF