• Title/Summary/Keyword: Axial

Search Result 8,448, Processing Time 0.032 seconds

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

An Analytical Study on the Deformation Behavior of the Reinforced Concrete Circular Section Column under Bi-Axial Bending Moment and Axial Force (2축휨가 축력을 받는 철근콘크리트 원형단면주의 변형성상에 관한 해석적연구)

  • 정호길
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.163-172
    • /
    • 1997
  • This paper is a study on the deformation behavior of the reinforced concrete circular section column carrying bi-axial bending moment and axial force. That is, this is to clarify the deformation behavior of the reinforced concrete circular section column carrying bi-axial bending moment and axial force by analytic methods. The deformation behavior of circular section column under bi-axial uni-axial bending moment and axial force are compare with those of a square section column under the same conditions. Those of circular section column under bi-axial bending moment are decreased as compared with those of circular section column under uni-axial bending moment. The results mentioned above are the same under the axial force of 7tons and 11tons.

  • PDF

An Experimental Study of 3-D Axial Type Turbine Performance with Various Axial Gaps between the Rotor and Stator (축류형 터빈에서 정${\cdot}$동익 축방향 거리의 변화에 대한 실험적 연구)

  • Kim Jong-Ho;Kim Eun-Jong;Cho Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.541-544
    • /
    • 2002
  • The turbine performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3/min\;at\;290mmAq$ static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to two times of stator axial chord length, and performance curves are obtained with 7 different axial gaps. The efficiency is dropped about $5{\%}$ of its highest value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.0-1.5Cx.

  • PDF

Seismic performance of exterior R/C beam-column joint under varying axial force

  • Hu, Yanbing;Maeda, Masaki;Suzuki, Yusuke;Jin, Kiwoong
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.623-635
    • /
    • 2021
  • Previous studies have suggested the maximum experimental story shear force of beam-column joint frame does not reach its theoretical value due to beam-column joint failure when the column-to-beam moment capacity ratio was close to 1.0. It was also pointed out that under a certain amount of axial force, an axial collapse and a sudden decrease of lateral load-carrying capacity may occur at the joint. Although increasing joint transverse reinforcement could improve the lateral load-carrying capacity and axial load-carrying capacity of beam-column joint frame, the conditions considering varying axial force were still not well investigated. For this purpose, 7 full-scale specimens with no-axial force and 14 half-scale specimens with varying axial force are designed and subjected to static loading tests. Comparing the experimental results of the two types of specimens, it has indicated that introducing the varying axial force leads to a reduction of the required joint transverse reinforcement ratio which can avoid the beam-column joint failure. For specimens with varying axial force, to prevent beam-column joint failure and axial collapse, the lower limit of joint transverse reinforcement ratio is acquired when given a column-to-beam moment capacity ratio.

A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine (저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF

The effect of axial displacement of the impeller on the performance and axial thrust of a pump (회전차의 축방향 변위가 펌프의 성능과 축추력에 미치는 영향)

  • Hong, Sun-Sam;Gang, Sin-Hyeong;Orachelashvili, B.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.562-569
    • /
    • 1997
  • The axial position of an impeller is misaligned in the process of manufacturing and assembling. For a single suction centrifugal pump with balancing holes, the effect of axial displacement of impeller on the performance, leakage loss and axial thrust acting on the impeller is experimentally investigated. The axial displacement decreases the pump efficiency, increases the leakage through the clearance between wearing ring and impeller, and affects the characteristics of axial thrust.

An Axial-type Self-bearing Motor for Small Vertical Axial-flow Pump (소형 수직형 축류 펌프를 위한 축방향 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.223-232
    • /
    • 2001
  • Aiming at a small axial pump with a levitated rotor, an axial-type self-bearing motor is presented, which has a rotor wish four permanent magnets and two stators with two-pole three-phase windings. In this system, only the axial motion of rotor is actively controlled by two opposite self-bearing motors just like in the case of an axial magnetic bearing, while the other motions are passively stable. For rotation, It follows the theory of a four-pole three-phase synchronous motor. This paper Introduces schemes for design and control of the self-bearing motor and shows some experimental results to Prove the feasibility of application for the axial Pump.

  • PDF

Interaction of Magnetic Flux Ropes in Relation to Solar Eruption

  • Yi, Sibaek;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2018
  • Twisted magnetic flux tubes (also called magnetic flux ropes) are believed to play a crucial role in solar eruptive phenomena. The evolution of a single flux rope with or without the influence of an overlying field of a simple geometry has been extensively studied and its physics is rather well understood. Observations show that interacting flux tubes are often involved in solar eruptions. It was Lau and Finn (1996) who intensively studied the interaction between two flux ropes, whose footpoints are anchored in two parallel planes. In this too simplified setting, the curvature of the flux rope axial fields is totally ignored. In our study, the footpoints of flux ropes are placed in a single plane containing a polarity inversion line as in the real solar active region. Our simulation study is performed for four cases: (1) co-axial field and co-axial current (co-helicity), (2) counter-axial field and co-axial current (counter-helicity), (3) co-axial field and counter-axial current (counter-helicity), and (4) counter-axial field and counter-axial current (co-helicity). Except case 3, each case is found to be related with certain eruptive features.

  • PDF

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting (2nd Report : Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진동에 관한 연구 (제2보: 강제 감쇠 연성진동 해석))

  • 이돈출;김의간;전효중
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.99-107
    • /
    • 2000
  • With the results of calculation for natural frequencies, the forced reponses of coupled vibration of propulsion shafting were analysed by the modal analysis method. For the forced response analysis, axial exciting forces, axial damper/detuner, propeller exciting forces and damping coefficients were extensively investigated. As the conclusion of this study, some items are cleared as next. - The torsional amplitudes are not influenced by the radial excitation forces. - The axial vibrational amplitudes are influenced by the tangential exciting forces. An increase of amplitude is observed for the speed range in the neighbourhood of any torsional critical speed. - The coupling effect becomes larger if torsional and axial critical speed are closer together. - The axial exciting force of propeller is relatively strong, comparing with those of axial forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, as a resume one can say, that- Torsional vibration calculation with the classical one dimension model is still valid. - The influence of torsional excitation at each crank upon the axial vibration is impotent, especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimension model is insufficient in most of cases. - The torsional exciting torque of propeller can be neglected in most of cases. But, the axial exciting forces of propeller can not be neglected for calculating axial vibration of propulsion shafting.

  • PDF

Analysis of an Electromagnet Biased Diskless Integrated Radial and Axial Magnetic Bearing (전자석 바이어스 Diskless반경방향-축방향 일체형 자기 베어링 해석)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.959-967
    • /
    • 2012
  • The theory for a new electromagnetically biased diskless combined radial and axial magnetic bearing is developed. A typical magnetic bearing system is composed of two radial magnetic bearings and an axial magnetic bearing. The axial magnetic bearing with a large axial disk usually limits rotor dynamic performance and makes assembling and disassembling difficult for maintenance work. This paper proposes a novel electromagnet biased integrated radial-axial magnetic bearing without axial disk. This integrated magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. The axial magnetic bearing unit in this combined magnetic bearing utilizes reluctance forces developed in the non-uniform air gaps such that the axial disk can be removed from the bearing unit. The 4-pole homopolar type radial magnetic bearing unit is also designed and analyzed. Three dimensional finite element model for the bearing is also developed and analyzed to illustrate the diskless combined magnetic bearing.