• Title/Summary/Keyword: Aviation fuel

Search Result 128, Processing Time 0.034 seconds

Assessment of a Phase Doppler Anemometry Technique in Dense Droplet Laden Jet

  • Koo, Ja-Ye;Kim, Jong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1083-1094
    • /
    • 2003
  • This study represents an assessment of the phase-Doppler technique to the measurements of dense droplet laden jet. High-pressure injection fuel sprays have been investigated to evaluate the use of the Phase-Doppler anemometry (PDA) technique. The critical issue is the stability of the phase-Doppler anemometry technique for dense droplet laden jet such as Diesel fuel spray in order to insure the results from the drop size and velocity measurements are repeatable, consistent, and physically realistic because the validation rate of experimental data is very low due to the thick optical density. The effect of shift frequency is minor, however, the photomultiplier tube (PMT) voltage setting is very sensitive to the data acquisition and noise in dense droplet laden jet. The optimum PMT voltage and shift frequency should be chosen so that the data such as volume flux and drop diameter do not change rapidly.

Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell (연료전지 분리판의 형상설계를 위한 유동해석)

  • Park, Jeong-Seon;Jeong, Hye-Mi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

Reliability Prediction of a Fuel Boost Pump using Statistical Methods (통계적 방법을 이용한 연료승압펌프의 신뢰도 예측)

  • Baek, Nak-Gon;Lee, Hyung-Ju;Lim, Jin-shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.143-148
    • /
    • 2010
  • A Statistical methods are used to determine the reliability of a Fuel Boost Pump for aviation. Failures are referenced from failure reports. The failure-free periods between successive failure events are evaluated in the form of weibull distribution. The results of analysis were calculated shape factor, scale parameter and mean time to failure. It found that the reason of failure is wear-out period.

  • PDF

Initial Sizing of General Aviation Aircraft Propelled by Electric Propulsion system (전기로 추진되는 일반 프로펠러 항공기의 초기 사이징)

  • Han, Hye-Sun;Shin, Kyo-Sic;Park, Hong-Ju;Hwang, Ho-Yon;Nam, Taewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.391-403
    • /
    • 2013
  • Propeller aircraft propelled by an electric propulsion system is gaining a renewed interest because of ever-increasing environmental concern on harmful emissions emitted from conventional jet engines and national energy security. Traditional aircraft sizing methods are not readily applicable to electric propulsion aircraft that utilize a variety of alternative energy sources and power generation systems. This study showcases an electric propulsion aircraft sizing exercise based on a generalized, power based sizing method. A general aviation aircraft is propelled by an electric propulsion system that comprises of a propeller, a high temperature super conducting motor, a Proton Exchange Membrance(PEM) fuel cell system fuelled with hydrogen, and power conditioning equipment. In order to assess the impact of technology progression, aircraft sizing was conducted for two different sets of technology assumptions for electric components, and the results were compared with conventional baseline aircraft.

A Study on the Estimation of GHGs Emission by Military Sector (군사부문 온실가스 배출량 산정에 관한 연구)

  • Song, Ki Pong;Choi, Sang Jin;Kim, Jeong;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • In this research, we have developed standardized procedures for preparing of emission inventories on military sector. The procedures are as follows; 1) Identify all relevant emission sources list of military sector in Republic of Korea. 2) Select methods to estimate GHGs emissions by source categories such as heating boilers, tactical vehicles, military vessels and military aviation from US EPA, IPCC, EEA/EMEP, and ROK Ministry of Environment. 3) Identify and select data sources for activities and parameters from Korea annual oil statistics and Korea Procurement system. 4) Compare with each GHGs emission used by each activities. The conclusive results utilized by emission source categories and associated factors are described as follows; In 2013, GHGs was estimated 2,656 kilotons $CO_2-eq$ emitted by military sector. The diesel combustion contributed from a minimum of 43.8% to a maximum of 50.2% and JP-8 contributed from a minimum of 43.7% to a maximum of 52.8% to the 2001~2015 GHGs emission trend. In the result of comparing GHGs emissions with Korea Annual Oil Statistics (Tier 1) and supplied fuel through the Korea Procurement System (Tier 2) in 2015, the total GHGs emission was 2,867 kilotons $CO_2-eq$ estimated by Tier 2 is similar to the emission estimated by Tier 1. However, this reveals that the GHGs emission separated by local areas were a lot of different from Tier 1 and 2. The cause of difference between Tier 1 and Tier 2 was that Korea annual oil statistics utilized data from a fuel supplier. The data does not reflect the reality of the location of end user.

Computational Vibration Analysis and Evaluation of a Tilt-Rotor Aircraft Considering Equipment Supporting Structures (틸트로터 항공기의 탑재장비 상세 지지구조 형상을 고려한 전산진동해석 및 평가)

  • Kim, Yu-Sung;Kim, Dong-Man;Yang, Jian-Ming;Lee, Jung-Jin;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.24-32
    • /
    • 2007
  • In this study, computational structural vibration analyses of a smart unmanned aerial vehicle (SUAV) with tilt-rotors due to dynamic hub loads have been conducted considering detailed supporting structures of installed equipments. Three-dimensional dynamic finite element model has been constructed for different fuel conditions and tilting angles corresponding to helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis is successfully established. Also, dynamic loads generated by rotating blades and wakes in the transient and forward flight conditions are calculated by unsteady computational fluid dynamics technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations of the vibration sensitive equipments are presented in detail. In addition, vibration characteristics of structures and installed equipments of which safe operation is normally limited by the vibration environment specifications are physically investigated for different flight conditions.

  • PDF

In-Flight and Numerical Drag Prediction of a Small Electric Aerial Vehicle (비행시험과 전산해석을 통한 소형무인기 항력 예측)

  • Jin, Won-Jin;Lee, Yung-Gyo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • This paper presents the procedure of drag prediction for EAV-1, based on a numerical analysis correlated to an in-flight test. EAV-1, developed by Korea Aerospace Research Institute, is a small-sized UAV to test a hydrogen-fuel cell power system. The long-endurance test flight of 4.5 hours provides numerous in-flight data. The thrust and drag of EAV-1 during the flight test are estimated based on the wind-tunnel test results for EAV-1's propeller performance. In addition, the CFD analysis using a commercial Navier-Stokes code is carried out for the full-scale EAV-1. The computational result suggests that the initial CFD analysis substantially under-predicts the in-flight drag in that the discrepancy is up to 27.6%. Therefore, additional investigation for more accurate drag prediction is performed; the effect of propeller slipstream is included in the CFD analysis through "fan disk" modelling. Also, the additional drag from airplane trim and load factor that actually exists during the flight test in a circular path is considered. These supplemental analyses for drag prediction turn out to be effective since the drag discrepancy reduces to 2.3%.

A Study on Dynamic Modelling and Mass Properties Estimation of the Lunar Module (달 탐사선의 동역학 모델링 및 관성 모멘트 추정에 관한 연구)

  • Shim, Sang-Hyun;Kim, Kwang-Jin;Lee, Sang-Chul;Ko, Sang-Ho;Rhyu, Dong-Young;Ju, Gwang-Hyeok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.30-37
    • /
    • 2010
  • This paper deals with attitude determination and parameter estimation problems for a lunar module. For this we first derive equations of motion for the lunar module by considering allocation locations (configurations) of reaction thruster and a reaction wheel assembly. The lunar module is assumed as a rigid body. In order to include the effect of fuel sloshing on the dynamics of the lunar module, we model it as a spherical pendulum for a simple analysis. For estimating angular rates and moment of inertia of the module, we employ an extended Kalman filter and the least mean square algorithms, respectively. Finally we construct a dynamical model for the lunar module by combining all these elements.

A Study on the characteristics of the Signals of AE according to Fracture mode of CFRP under Tensile load (탄소섬유강화플라스틱(CFRP)의 인장하중하에서의 파괴거동에 따른 음향방출신호 특성에 관한 연구)

  • Lee, Kyung-Won;Lee, Sang-Yun;Nam, Jun-Young;Lee, Jong-Oh;Lee, Sang-Yul;Lee, Bo-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.51-58
    • /
    • 2010
  • Recently, aerospace structures have lightweight trend in order to reduce the cost of fuel and system, Carbon Fiber Reinforced Plastic (CFRP) can give the ability to reduce weight at 20~50% as the substitution of metal alloy, and there are advantages such as high Non-rigid, specific strength and anti-corrosion, but it is difficult to prove its destruction properties due to heterogeneous structure and anisotropy. In this study we designed specimen, inducing distinguishing destructions of material (for example, matrix crack, fiber breakage, and delamination) by using the Carbon Fiber Reinforced Plastic (CFRP) which is used in a real aircraft, to apply acoustic emission technique to aerospace structures. And we gained data via tensile testing and acoustic emission technique, from which each fault signal was classified respectively by using AE parameters and waveform.

External Store Separation Analysis Using Moving and Deforming Mesh Method (이동변형격자 기법을 활용한 외부장착물 분리운동 해석)

  • Ahn, Byeong Hui;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.9-20
    • /
    • 2019
  • A military aircraft generally includes external stores such as fuel tanks or external arming, depending on the purpose of the operation. When a store is dropped from a military aircraft at high subsonic, transonic, or supersonic speeds, the aerodynamic forces and moments acting on the store can be sufficient to send the store back into contact with the aircraft. This can cause damage to the aircraft and endanger the life of the crew. In this study, time accurate computational fluid dynamics (CFD) with dynamic moving grid (moving and deformable mesh, MDM) technique has been used to accurately calculate store trajectories. For the verification of the present numerical approach, a wind tunnel test model for the wing-pylon-finned store configuration has been considered and analyzed. The comparison results for the ejected store trajectories between the present numerical analysis and the wind tunnel test data at the Mach number of 0.95 and 1.2 are presented. It is also importantly shown that the numerical parameter of MDM technique gives significant effect for the calculated store trajectory in the low-supersonic flow such as Mach 1.2.