• Title/Summary/Keyword: Avian Influenza Virus

Search Result 127, Processing Time 0.029 seconds

Comparison of serological methods for detection of avian influenza virus antibodies (가금인플루엔자 바이러스 항체검출을 위한 혈청학적 진단법 비교)

  • Han, Myung-guk;Park, Kyoung-yoon;Kwon, Yong-kuk;Kim, Jae-hong
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.73-80
    • /
    • 2002
  • An enzyme-linked immunosorbent assay (ELISA) using purified hemagglutinin of swine influenza virus (H1N1) as antigen was developed for detection of antibody to avian influenza virus (AIV). The sensitivity and specificity of a developed and commercial available ELISA kits were compared with those of agar gel precipitation (AGP) test and hemagglutination inhibition (HI) test using sera collected from chickens under condition of field exposure. The concentration of antigen, serum dilution and concentration of enzyme-conjugated secondary antibody in developed ELISA (S-ELISA) were 0.5ug/100ul, 1:200 and 0.03ug/100ul, respectively. The correlation coefficients between S-ELISA and commercial ELISA and HI titers were 0.419 and 0.533, respectively. A significant correlation (p < 0.01) was not found between HI and ELISA titers. The S-ELISA was found to be as more sensitive and specific than the AGP test, showing 86.8% sensitivity and 85.3% specificity. It is suggested that the ELISA using the SIV as antigen may be useful method as an investigating tool for AIV serological surveillance.

A Study on the Simulation and Analysis of the Emergency Response Training for Highly Pathogenic Avian Influenza (조류인플루엔자 재난대응훈련 시뮬레이션 기술연구)

  • Kang, Min-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • Simulation using the virtual reality has been applied in various fields such as exercise, education, disaster simulation training, but there is a little research on disease caused by virus transmission. In this study, we conducted simulation studies and analysis of avian influenza disaster response training. The annual avian influenza virus is recurring every year in Korea, but there are still few solutions and preventive measures for the preventing the avian influenza. The avian influenza can cause a great deal of societal harm and enormous economic damage. Prophylaxis is important because livestock epidemics, such as avian influenza and foot-and-mouth disease, have a large impact on farm households. Therefore, we proposed and analyzed contents that can be avoided through simulation of avian influenza disaster response presented in this study.

Molecular Characterization of an H5N3 Influenza Virus Isolated from Spot-Billed Duck

  • Lee, Jin Hwa;Kwon, Hyuk Moo;Sung, Haan Woo
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.243-252
    • /
    • 2013
  • Among the 16 hemagglutinin (HA) subtypes of avian influenza virus (AIV), only the H5 and H7 subtypes have caused highly pathogenic avian influenza (HPAI) in poultry. However, most H5 or H7 subtype viruses are categorized as low pathogenic avian influenza (LPAI). Some AIVs, including the H5 and H7 HPAI viruses, have shown the ability to infect humans directly. In this study, we describe the biological and molecular characterization of an H5N3 AIV (SBD/KR/KNU SYG06/06) isolated from spot-billed duck (Anas poecilorhyncha) in Korea. A phylogenetic analysis of the eight viral genes showed that the SBD/KR/KNU SYG06/06 isolate belongs to the Eurasian lineage and that the SBD/KR/KNU SYG06/06 isolate was clearly different from HPAI H5N1 strains, including human isolates and the Italian HPAI H5N2 strains. Additionally, no relationship was found between SBD/KR/KNU SYG06/06 and the Korean HPAI H5N1 isolates. The SBD/KR/ KNU SYG06/06 isolate had avian specific receptor binding site residues in the HA protein and the four C-terminal amino acids in the NS1 protein. The HA protein of the SBD/KR/KNU SYG06/06 isolate exhibited the typical LPAI motif at the cleavage site and this virus produced no cytopathic effects in MDCK cells without trypsin. Given these results, we suggest that the H5N3 AIV isolated from the spot-billed duck should be considered an LPAI virus and should have no pathogenic effect in humans.

Identification of Differentially Expressed Genes in Ducks in Response to Avian Influenza A Virus Infections

  • Ndimukaga, Marc;Won, Kyunghye;Truong, Anh Duc;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Avian influenza (AI) viruses are highly contagious viruses that infect many bird species and are zoonotic. Ducks are resistant to the deadly and highly pathogenic avian influenza virus (HPAIV) and remain asymptomatic to the low pathogenic avian influenza virus (LPAIV). In this study, we identified common differentially expressed genes (DEGs) after a reanalysis of previous transcriptomic data for the HPAIV and LPAIV infected duck lung cells. Microarray datasets from a previous study were reanalyzed to identify common target genes from DEGs and their biological functions. A total of 731 and 439 DEGs were identified in HPAIV- and LPAIV-infected duck lung cells, respectively. Of these, 227 genes were common to cells infected with both viruses, in which 193 genes were upregulated and 34 genes were downregulated. Functional annotation of common DEGs revealed that translation related gene ontology (GO) terms were enriched, including ribosome, protein metabolism, and gene expression. REACTOME analyses also identified pathways for protein and RNA metabolism as well as for tissue repair, including collagen biosynthesis and modification, suggesting that AIVs may evade the host defense system by suppressing host translation machinery or may be suppressed before being exported to the cytosol for translation. AIV infection also increased collagen synthesis, showing that tissue lesions by virus infection may be mediated by this pathway. Further studies should focus on these genes to clarify their roles in AIV pathogenesis and their possible use in AIV therapeutics.

Study of Specific Oligosaccharide Structures Related with Swine Flu (H1N1) and Avian Flu, and Tamiflu as Their Remedy

  • Yoo, Eun-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.449-454
    • /
    • 2011
  • The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(${\alpha}2$-6) galactose(${\beta}1$-4)glucose or sialic acid(${\alpha}2$-3)galactose(${\beta}1$-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.

Inactivation of Avian Influenza Viruses by Alkaline Disinfectant Solution (알칼리성 소독액에 의한 조류인플루엔자바이러스 불활성화)

  • Jo, Su-Kyung;Kim, Heui-Man;Lee, Chang-Jun;Lee, Joo-Seob;Seo, Sang-Heui
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.340-344
    • /
    • 2007
  • Avian influenza viruses cause a considerable threat to humans and animals. In this study, we investigated whether alkaline disinfectant solution can inactivate H5N1, H3N2, H6N1, and H9N2 subtypes of avian influenza virus. When H5N1, H3N2, H6N1, and H9N2 avian influenza viruses were treated with alkaline solution diluted with PBS (pH 7.2) prior to infection into MDCK cells, alkaline disinfectant solution (at dilutions up to $10^{-2}$) completely inactivated all avian influenza subtypes tested. To confirm the inactivation of avian influenza viruses by alkaline disinfectant solution, we used an immunofluorescence assay with influenza A anti-nucleoprotein antibody and FITC-labeled secondary antibody to stain MDCK cells infected with avian H9N2 influenza viruses. No staining was observed in MDCK rells infected with H9N2 viruses that were pre-treated with a $10^{-2}$ dilution of alkaline disinfectant solution, while strong staining was observed in MDCK cells infected with H9N2 viruses without pre-treatment. Our results indicate that alkaline solution could help to control avian influenza viruses including the highly pathogenic H5N1 subtype.

Dispensable role of wild rodents in avian influenza A virus transmission in Gyeonggi province, Korea

  • Chung-Young Lee;Ilhwan Kim;Hyuk-Joon Kwon
    • Korean Journal of Veterinary Research
    • /
    • v.64 no.2
    • /
    • pp.13.1-13.6
    • /
    • 2024
  • Avian influenza A viruses (IAVs) present significant threats to both animal and human health through their potential for cross-species transmission and global spread. Clade 2.3.4.4 H5Nx highly pathogenic avian IAVs initially emerged in East Asia between 2013 and 2014. Since then, they have spread to Europe, Africa, and America via migratory bird flyways. However, beyond viral transmission primarily facilitated by migratory birds, the potential involvement of other intermediate factors for virus transmission remains poorly investigated. This study aimed to investigate the role of wild rodents as intermediary hosts in the ecology of avian IAVs in Gyeonggi province, South Korea. By capturing and analyzing 189 wild rodents near poultry farms and migratory bird habitats in 2013 and 2014 and employing serological assays and virus isolation techniques, we found no evidence of IAV infection among these populations. Our results suggest that wild rodents may not significantly contribute to the transmission dynamics of IAVs within these regions.

Establishment of optimal disinfection condition of weak acid hypochlorous solution for prevention of avian influenza and foot-and-mouth disease virus transmission (조류 인플루엔자와 구제역 바이러스 차단방역을 위한 미산성 차아염소산수의 소독 조건)

  • Kim, Jin-Yoon;Yun, Dong-Sik;Lee, Haw-Yong;Jeong, Woo-Seog;Park, Seung-Chun
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.101-104
    • /
    • 2019
  • This study examined the disinfection conditions (exposure time, 0-30 min; exposure temperature, $4^{\circ}C-65^{\circ}C$) of hypochlorous acid water (HOCl) in automobile disinfection equipment. The study tested poliovirus type 1 (PV1), low pathogenic avian influenza virus (AIV, H9N2), and foot and mouth disease virus (FMDV, O type). As a result, the PV1 and FMD viruses were inactivated easily (virus titer 4 log value) by HOCl (> 100 ppm) but the AIV required higher exposure temperatures (> $55^{\circ}C$). In conclusion, the exposure temperature and time are important factors in deactivating AIV and FMDV.