• Title/Summary/Keyword: Averaging Approach

Search Result 95, Processing Time 0.025 seconds

A New Hybrid "Park's Vector - Time Synchronous Averaging" Approach to the Induction Motor-fault Monitoring and Diagnosis

  • Ngote, Nabil;Guedira, Said;Cherkaoui, Mohamed;Ouassaid, Mohammed
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.559-568
    • /
    • 2014
  • Induction motors are critical components in industrial processes since their failure usually lead to an unexpected interruption at the industrial plant. The studies of induction motor behavior during abnormal conditions and the possibility to diagnose different types of faults have been a challenging topic for many electrical machine researchers. In this regard, an efficient and new method to detect the induction motor-fault may be the application of the Time Synchronous Averaging (TSA) to the stator current Park's Vector. The aim of this paper is to present a methodology by which defects in a three-phase wound rotor induction motor can be diagnosed. By exploiting the cyclostationarity characteristics of electrical signals, the TSA method is applied to the stator current Park's Vector, allowing the monitoring of the induction motor operation. Simulation and experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the hybrid Park's Vector-TSA approach.

A New Method for Segmenting Speech Signal by Frame Averaging Algorithm

  • Byambajav D.;Kang Chul-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.128-131
    • /
    • 2005
  • A new algorithm for speech signal segmentation is proposed. This algorithm is based on finding successive similar frames belonging to a segment and represents it by an average spectrum. The speech signal is a slowly time varying signal in the sense that, when examined over a sufficiently short period of time (between 10 and 100 ms), its characteristics are fairly stationary. Generally this approach is based on finding these fairly stationary periods. Advantages of the. algorithm are accurate border decision of segments and simple computation. The automatic segmentations using frame averaging show as much as $82.20\%$ coincided with manually verified segmentation of CMU ARCTIC corpus within time range 16 ms. More than $90\%$ segment boundaries are coincided within a range of 32 ms. Also it can be combined with many types of automatic segmentations (HMM based, acoustic cues or feature based etc.).

Speech Enhancement based on Minima Controlled Recursive Averaging Technique Incorporating Second-order Conditional Maximum a posteriori Criterion (2차 조건 사후 최대 확률 기반 최소값 제어 재귀평균기법을 이용한 음성향상)

  • Kum, Jong-Mo;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.132-138
    • /
    • 2009
  • In this paper, we propose a novel approach to improve the performance of minima controlled recursive averaging (MCRA) which is based on the second-order conditional maximum a posteriori (CMAP). From an investigation of the MCRA scheme, it is discovered that the MCRA method cannot take full consideration of the inter-frame correlation of voice activity since the noise power estimate is adjusted by the speech presence probability depending on an observation of the current frame. To avoid this phenomenon, the proposed MCRA approach incorporates the second-order CMAP criterion in which the noise power estimate is obtained using the speech presence probability conditioned on both the current observation and the speech activity decisions in the previous two frames. Experimental results show that the proposed MCRA technique based on second-order conditional MAP yields better results compared to the conventional MCRA method.

Systematic Dynamic Modeling of an Integrated Single-stage Power Converter

  • Choi, Ki-Young;Lee, Kui-Jun;Kim, Yong-Wook;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2288-2296
    • /
    • 2015
  • This paper proposes a novel systematic modeling approach for an integrated single-stage power converter in order to predict its dynamic characteristics. The basic strategy of the proposed modeling is substituting the internal converters with an equivalent current source, and then deriving the dynamic equations under a standalone operation using the state-space averaging technique. The proposed approach provides an intuitive modeling solution and simplified mathematical process with accurate dynamic prediction. The simulation and experimental results by using an integrated boost-flyback converter prototype provide verification consistent with theoretical expectations.

Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR

  • Moallemi, S.;Pietruszczak, S.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • In this study an implicit algorithm for modeling of propagation of macrocracks in 3D concrete structures suffering from alkali-silica reaction has been developed and implemented. The formulation of the problem prior to the onset of localized deformation is based on a chemo-elasticity approach. The localized deformation mode, involving the formation of macrocracks, is described using a simplified form of the strong discontinuity approach (SDA) that employs a volume averaging technique enhanced by a numerical procedure for tracing the propagation path in 3D space. The latter incorporates a non-local smoothening algorithm. The formulation is illustrated by a number of numerical examples that examine the crack propagation pattern in both plain and reinforced concrete under different loading scenarios.

The Treatment of the Free-surface Boundary Conditions by Finite-Difference Midpoint-Averaging Scheme for Elastic Wave Equation Modeling (탄성파 파동 방정식 모델링에서 중간점 차분 기법을 이용한 지표 경계 조건의 처리)

  • Park, Kwon-Gyu;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.61-69
    • /
    • 2000
  • The free-surface boundary conditions are persistent problem in elastic wave equation modeling by finite-difference method, which can be summarized with the degradation of the accuracy of the solution and limited stability range in Poisson's ratio. In this paper, we propose the mid-point averaging scheme as an alternative way of implementing the free-surface boundary conditions, and present the solution to Lamb's problem to verify our approach.

  • PDF

Reliability Analysis of Slope Stability with Sampling Related Uncertainty (통계오차를 고려한 사면안정 신뢰성 해석)

  • Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.51-59
    • /
    • 2007
  • A reliability-based approach that can systematically model various sources of uncertainty is presented in the context of slope stability. Expressions for characterization of soil properties are developed in order to incorporate sampling errors, spatial variability and its effect of spatial averaging. Reliability analyses of slope stability with different statistical representations of soil properties show that the incorporation of sampling error, spatial correlation, and conditional simulation leads to significantly lower probability of failure than that obtained by using simple random variable approach. The results strongly suggest that the spatial variability and sampling error have to be properly incorporated in slope stability analysis.

Simulation and Experimental Studies of Real-Time Motion Compensation Using an Articulated Robotic Manipulator System

  • Lee, Minsik;Cho, Min-Seok;Lee, Hoyeon;Chung, Hyekyun;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.171-180
    • /
    • 2017
  • The purpose of this study is to install a system that compensated for the respiration motion using an articulated robotic manipulator couch which enables a wide range of motions that a Stewart platform cannot provide and to evaluate the performance of various prediction algorithms including proposed algorithm. For that purpose, we built a miniature couch tracking system comprising an articulated robotic manipulator, 3D optical tracking system, a phantom that mimicked respiratory motion, and control software. We performed simulations and experiments using respiratory data of 12 patients to investigate the feasibility of the system and various prediction algorithms, namely linear extrapolation (LE) and double exponential smoothing (ES2) with averaging methods. We confirmed that prediction algorithms worked well during simulation and experiment, with the ES2-averaging algorithm showing the best results. The simulation study showed 43% average and 49% maximum improvement ratios with the ES2-averaging algorithm, and the experimental study with the $QUASAR^{TM}$ phantom showed 51% average and 56% maximum improvement ratios with this algorithm. Our results suggest that the articulated robotic manipulator couch system with the ES2-averaging prediction algorithm can be widely used in the field of radiation therapy, providing a highly efficient and utilizable technology that can enhance the therapeutic effect and improve safety through a noninvasive approach.

The Statistical Approach for Determining the Parallel-Bundle Strength from Single-Filament Data of PET (PET single filament 데이터로부터의 번들강도 결정을 위한 통계적 접근)

  • Cho, Kee-Hwan;Jeong, Sung-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.291-292
    • /
    • 2003
  • Although the tensile strength of textile materials are determined by that of their components, it is well known that the tensile strength of fiber bundles and yams is not accurately predicted from that of single-fibers by simple averaging methods or mathematical calculations, because of variations in their strength. Therefore, there have been attempts to interpret the bundle strength from that of its elements by the stochastical approach. (omitted)

  • PDF

Barrier Option Pricing with Model Averaging Methods under Local Volatility Models

  • Kim, Nam-Hyoung;Jung, Kyu-Hwan;Lee, Jae-Wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.84-94
    • /
    • 2011
  • In this paper, we propose a method to provide the distribution of option price under local volatility model when market-provided implied volatility data are given. The local volatility model is one of the most widely used smile-consistent models. In local volatility model, the volatility is a deterministic function of the random stock price. Before estimating local volatility surface (LVS), we need to estimate implied volatility surfaces (IVS) from market data. To do this we use local polynomial smoothing method. Then we apply the Dupire formula to estimate the resulting LVS. However, the result is dependent on the bandwidth of kernel function employed in local polynomial smoothing method and to solve this problem, the proposed method in this paper makes use of model averaging approach by means of bandwidth priors, and then produces a robust local volatility surface estimation with a confidence interval. After constructing LVS, we price barrier option with the LVS estimation through Monte Carlo simulation. To show the merits of our proposed method, we have conducted experiments on simulated and market data which are relevant to KOSPI200 call equity linked warrants (ELWs.) We could show by these experiments that the results of the proposed method are quite reasonable and acceptable when compared to the previous works.