Journal of the Korean Data and Information Science Society
/
v.12
no.1
/
pp.127-133
/
2001
In this article we establish multivariate cumulative sum (CUSUM) control charts based on residual vector with correlated observations. We first find the residual vector and its expectation and variance-covariance matrix and then evaluate the average run length (ARL) of the control charts.
Communications for Statistical Applications and Methods
/
v.12
no.2
/
pp.265-273
/
2005
In this paper, we proposed multivariate EWMA control charts for both combine-accumulate and accumulate-combine approaches to monitor dispersion matrix of multiple quality variables. Numerical performance of the proposed charts are evaluated in terms of average run length(ARL). The performances show that small smoothing constants with accumulate-combine approach is preferred for detecting small shifts of the production process.
Communications for Statistical Applications and Methods
/
v.5
no.3
/
pp.645-657
/
1998
During the start-up of a process or in a job-shop environment conventional use of control charts may lead to erroneous results due to the limited number of subgroups used for the construction of control limits. This article considers the effect of using estimated control limits based on a limited number of subgroups. Especially we investigate the performance of $\overline{X}$ and R control charts when the data are independent, and X control chart when the data are serially correlated in terms of average run length(ARL) and standard deviation run length(SDRL) using simulation. It is found that the ARL and SDRL get larger as the number of subgroups used for the construction of the chart becomes smaller.
This papeer proposes a general approach of the multivariate expontially weighted moving average(MEWMA) chart, in which the smoothing matrix has full elements instead of only diagonal elements. The average run length (ARL) properties of this scheme are examined for a diverse set of quality control environments and the information to design the chhart is provied. Performance of the scheme is measured by estmating ARL and compared to those of two group cumulative sum (CUSUM) chats. The comparison resullts show that the MEWMA chart can improve its ARL performance in detecting a small shifts out-of-control in the start-up stage, the general MEWMA chart of a full smoothing matrix appears to offer an exceptional protection aginst departures from control in the process mean.
Communications for Statistical Applications and Methods
/
v.6
no.1
/
pp.69-76
/
1999
A new statistic {{{{ {d }`_{2 } ^{s } }}}} is introduced for constructing co ntrol limits. It is easier and more convienient than d2 We will show the characteristic of {{{{ {d }`_{2 } ^{s } }}}} and evaluate {{{{ {d }`_{2 } ^{s } }}}} through average run length(ARL).
Journal of Korean Institute of Industrial Engineers
/
v.34
no.3
/
pp.308-317
/
2008
This research investigates economic characteristics of 2 of 2 runs rules under the Shewhart $\bar{X}$ control chart scheme. A Markov chain approach is employed in order to calculate the in-control average run length (ARL) and the average length of analysis cycle. States of the process are defined according to the process conditions at sampling time and transition probabilities are derived from the state definitions. A steady state cost function is constructed based on the Lorezen and Vance(1986) model. Numerical examples show that 2 of 2 runs rules are economically superior to the Shewhart $\bar{X}$ chart in many cases.
In Shewhart control chart, the average run length(ARL) is calculated using the mean of a conventional geometric distribution(CGD) assuming a sequence of identical and independent Bernoulli trials. In this, the success probability of CGB is the probability that any point exceeds the control limits. When the process is in-control state, there is no problem in the above assumption since the probability that any point exceeds the control limits does not change if the in-control state continues. However, if the out-of-control state begins and continues during the process, the probability of exceeding the control limits may take two forms. First, once the out-of-control state begins with exceeding probability p, it continues with the same exceeding probability p. Second, after the out-of-control state begins, the exceeding probabilities may very according to some pattern. In the first case, ARL is the mean of CGD with success probability p as usual. But in the second case, the assumption of a sequence of identical and independent Bernoulli trials is invalid and we can not use the mean of CGD as ARL. This paper concentrate on that point. By adopting one generalized binomial distribution(GBD) model that allows correlated Bernoulli trials, generalized geometric distribution(GGD) is defined and its mean is derived to find an alternative ARL when the process is in out-of-control state and the exceeding probabilities take the second form mentioned in the above. Small-scale simulation is performed to show how an alternative ARL works.
Kusukawa and Ohta presented the $CS_{CQ-r}$ chart to monitor the process defect $rate{\lambda}$ in high-yield processes that is derived from the count of defects. The $CS_{CQ-r}$ chart is more sensitive to $monitor{\lambda}$ than the CQ (Cumulative Quantity) chart proposed by Chan et al.. As a more superior chart in high-yield processes, we propose a Synthetic chart that is the integration of the CQ_-r chart and the $CS_{CQ-r}$chart. The quality characteristic of both charts is the number of units y required to observe r $({\geq}2)$ defects. It is assumed that this quantity is an Erlang random variable from the property that the quality characteristic of the CQ chart follows the exponential distribution. In use of the proposed Synthetic chart, the process is initially judged as either in-control or out-of-control by using the $CS_{CQ-r}$chart. If the process was not judged as in-control by the $CS_{CQ-r}$chart, the process is successively judged by using the $CQ_{-r}$chart to confirm the judgment of the $CS_{CQ-r}$chart. Through comparisons of ARL (Average Run Length), the proposed Synthetic chart is more superior to monitor the process defect rate in high-yield processes to the stand-alone $CS_{CQ-r}$ chart.
Journal of the Korean Society for Precision Engineering
/
v.15
no.3
/
pp.50-60
/
1998
This paper is concerned with the design of two residual control charts for real-time monitoring of the continuous flow processes. Two different control charts are designed under the situation that observations are correlated each other. Kalman-Filter based model estimation is employed when the process model is known. A black-box approach, based on Back-Propagation Neural Network, is also applied for the design of control chart when there is no prior information of process model. Performance of the designed control charts and traditional control charts is evaluated. Average run length(ARL) is adopted as a criterion for comparison. Experimental results show that the designed control chart using the Neural Network's modeling has shorter ARL than that of the other control charts when process mean is shifted. This means that the designed control chart detects the out-of-control state of the process faster than the others. The designed control chart using the Kalman-Filter based model estimation also has better performance than traditional control chart when process is out-of-control state.
Adaptive EWMA(Exponentially Weighted Moving Average)-x control chart using the Kalman gain recursive average is designed. The designed control chart is effective to on-line process monitoring as continuous flow processes. Performance evaluation between the designed control chart and traditional one is implemented. For this, ARL(Average Run Length) is adopted as a criterion. Results show that the designed adaptive EWMA-x control chart has shorter ARL than EWMA-x control chart when process mean is shifted. This model can be extended to process prevention control. The methodology proposed in this research is turned out to show the high performance than that of the given methodologies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.