• Title/Summary/Keyword: Available and unavailable time

Search Result 12, Processing Time 0.022 seconds

Estimation of Line Utilization Rate and Track Maintenance Time of Conventional Railway (일반철도의 선로이용율과 선로 유지보수시간 추정)

  • Ki, Hyungseo;Park, Dongjoo;Kim, Dongsoo;Kim, Haengbae
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.638-644
    • /
    • 2012
  • In this study, we numerically estimated available and unavailable time of conventional railway by examining 60% which is known as average range of track utilization efficiency. We also estimated track repair time for maintenance which is the main factor of making track utilization change and analyzed appropriate estimated time. The railway's safety should be guaranteed by appropriate railway operating plan and by adequate rail facilities maintenance. At the same time, daily railway train 'Dia's recovery power should be reflected to the management plan. Considering these factors, we examined mechanical equipment and the national rail network in order to rationally estimate track repair time of the maintenance and to secure spare time in case of train delays. It was found that track utilization efficiency was more or less 60%.

Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 추정기 기반 적응 유도기법)

  • 최진영;좌동경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.680-688
    • /
    • 2004
  • This paper proposes an observer-based method for adaptive nonlinear guidance. Previously, adaptive nonlinear guidance law is proposed considering target maneuver and control loop dynamics. However, several information of this guidance law is not available, and therefore needs to be estimated for more practical application. Accordingly, considering the unavailable information as bounded time-varying uncertainties, an integrated guidance and control model is re-formulated in normal form with respect to available states including target uncertainties and control loop dynamics. Then, a nonlinear observer is designed based on the integrated guidance and control model. Finally, using the estimates for states and uncertainties, an observer-based adaptive guidance law is proposed to guarantee the desired interception performance against maneuvering target. The proposed approach can be effectively used against target maneuver and the limited performance of control loop. The stability analyses and simulations of the proposed observer and guidance law are included to demonstrate the practical application of our scheme.

Incorporating Resource Dynamics to Determine Generation Adequacy Levels in Restructured Bulk Power Systems

  • Felder, Frank A.
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.100-105
    • /
    • 2004
  • Installed capacity markets in the northeast of the United States ensure that adequate generation exists to satisfy regional loss of load probability (LOLP) criterion. LOLP studies are conducted to determine the amount of capacity that is needed, but they do not consider several factors that substantially affect the calculated distribution of available capacity. These studies do not account for the fact that generation availability increases during periods of high demand and therefore prices, common-cause failures that result in multiple generation units being unavailable at the same time, and the negative correlation between load and available capacity due to temperature and humidity. A categorization of incidents in an existing bulk power reliability database is proposed to analyze the existence and frequency of independent failures and those associated with resource dynamics. Findings are augmented with other empirical findings. Monte Carlo methods are proposed to model these resource dynamics. Using the IEEE Reliability Test System as a single-bus case study, the LOLP results change substantially when these factors are considered. Better data collection is necessary to support the more comprehensive modeling of resource adequacy that is proposed. In addition, a parallel processing method is used to offset the increase in computational times required to model these dynamics.

Simulation Experimental Analysis on a Seat Inventory Control Problem for Sequential Multiple Flights with Customer Choice Behavior (순차적으로 출발하는 여객노선에서 고객의 의사결정을 고려한 좌석재고 통제문제에 대한 모의실험 분석)

  • Park, Changkyu;Seo, Junyong;Hong, Yunsook
    • Korean Management Science Review
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • We conduct the future studies suggested by Park and Seo [3]. They considered a seat inventory control problem in which flights depart sequentially during a similar time-interval and passengers purchase available seats depending on individual customer choice behavior. Customer choice behavior can lead to one among a horizontal shift, a diversion-up, and a booking loss when a desired fare class is unavailable. We investigate how seat availability calculation method, booking limit control mechanism, seat inventory capacity, number of booking class, type of seat demand influence on revenues in an airline industry through thorough computer simulation experiments.

Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Transducers (두 개의 초음파 거리계를 이용한 관성센서 기반의 의사 장기선 (Pseudo-LBL) 복합항법 알고리듬)

  • LEE PAN-MOOK;JUN BONG-HUAN;HONG SEOK-WON;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents an integrated underwater navigational algorithm for unmanned underwater vehicles, using additional two-range transducers. This paper proposes a measurement model, using two range measurements, to improve the performance of an IMU-DVL (inertial measurement unit - Doppler velocity log) navigation system for long-time operation of underwater vehicles, excluding DVL measurement. Extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the external measurements are available. Simulation was conducted with the 6-d.o.f nonlinear numerical model of an AUV in lawn-mowing survey mode, at current flaw, where the velocity information is unavailable. Simulations illustrate the effectiveness of the integrated navigation system, assisted by the additional range measurements without DVL sensing.

Development of a Reference-Pulse Type 3-Axis Simultaneously Controlled PC-NC Milling System (Reference-Pulse 방식 3축 동시제어 PC-NC 밀링 시스템 개발에 관한 연구)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.197-203
    • /
    • 1999
  • Increasing demands on precision machining have necessitated the tool to move not only position error as small as possible, but also with smoothly varying feedrates. Because of the lack of accurate and efficient algorithms for generation of 3-dimensional lines and circles, a full accomlishment for available machine tool resolution is generally unavailable. In this paper, a reference-pulse type 3-axis PC_NC milling system is developed for the precision machining of complex shapes in 3-dimensional space. Three AC servomotors are used as the actuator instead of the hand wheel to operate a 3-axis milling machine under the same mechanical structure. A PC is used to handle the control signal calculation for various types of motion command. To achieve the synchronous 3-axis motion, a real-time reference-pulse 3-dimensional linear and circular interpolator based on the intersection criteria is developed in software. The performance test via computer simulation and actual machining have shown that the PC-NC milling system is useful for the machining of arbitrary lines and circles in 3-dimensional space.

  • PDF

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Multi-Hop Clock Synchronization Based on Robust Reference Node Selection for Ship Ad-Hoc Network

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Ship ad-hoc network (SANET) extends the coverage of the maritime communication among ships with the reduced cost. To fulfill the growing demands of real-time services, the SANET requires an efficient clock time synchronization algorithm which has not been carefully investigated under the ad-hoc maritime environment. This is mainly because the conventional algorithms only suggest to decrease the beacon collision probability that diminishes the clock drift among the units. However, the SANET is a very large-scale network in terms of geographic scope, e.g., with 100 km coverage. The key factor to affect the synchronization performance is the signal propagation delay, which has not being carefully considered in the existing algorithms. Therefore, it requires a robust multi-hop synchronization algorithm to support the communication among hundreds of the ships under the maritime environment. The proposed algorithm has to face and overcome several challenges, i.e., physical clock, e.g., coordinated universal time (UTC)/global positioning system (GPS) unavailable due to the atrocious weather, network link stability, and large propagation delay in the SANET. In this paper, we propose a logical clock synchronization algorithm with multi-hop function for the SANET, namely multi-hop clock synchronization for SANET (MCSS). It works in an ad-hoc manner in case of no UTC/GPS being available, and the multi-hop function makes sure the link stability of the network. For the proposed MCSS, the synchronization time reference nodes (STRNs) are efficiently selected by considering the propagation delay, and the beacon collision can be decreased by the combination of adaptive timing synchronization procedure (ATSP) with the proposed STRN selection procedure. Based on the simulation results, we finalize the multi-hop frame structure of the SANET by considering the clock synchronization, where the physical layer parameters are contrived to meet the requirements of target applications.

Effect on Trauma Patients of Having Even One General Trauma Surgeon on Duty

  • Jo, Jang Whan;Cho, Jun Min;Kim, Nam Ryeol
    • Journal of Trauma and Injury
    • /
    • v.29 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Purpose: Specialized general trauma surgeons play an important role in the care of trauma patients. Hemoperitoneum is a severe, but representative, condition following a life-threatened trauma. The objective of this study was to compare the outcomes for polytrauma patients with hemoperitoneum between the periods during which a trauma surgeon was available and that unavailable. Methods: Thirty-one trauma patients with hemoperitoneum who were treated at Korea University Guro Hospital over a period of 4 years were included in this study, and their case records were analyzed retrospectively. The patients were divided into two groups, the 2011 and 2012 group and the 2013 and 2014 group corresponding, respectively, to the periods that a trauma surgeon was not and was working. Vital signs on admission, scores on the injury severity scale and, Glasgow coma scale, elapsed time to diagnostic, and therapeutic, and/or operative interventions were studied. The effects on intensive care unit and hospital lengths of stay, as well as mortality, were also studied. Results: The study population consisted of 16 and 15 patients in group 1 and 2, respectively. The patients in both groups had six unstable hemodynamic on admission. The time to the main procedure (intervention, operation etc.) was longer during the periods when a trauma surgeon was not working than it was during the period when working. This difference did not reached statistical significance. The mortality rates for the two groups were not statistically different either (18.75% vs 26.67%; p=0.928). Conclusion: Having at least one specialized general trauma surgeon on duty may reduce the time to intervention and surgery for severe trauma patients with hemoperitoneum, but appears to have no effect on the mortality rates. In conclusion, having only one trauma surgeon on duty does not improve the quality of care for trauma patients.

Enhanced SBAS Integration Method Using Combination of Multiple SBAS Corrections

  • Yun, Ho;Kim, Do-Yoon;Jeon, Sang-Hoon;Park, Bynng-Woon;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2009
  • In this parer, we propose a new way of improving DGNSS service using combination of multiple SBAS information. Because SBAS uses Geostationary Earth Orbit (GEO) satellites, it has very large coverage but it can be unavailable in urban canyon because of visibility problem. R. Chen solved this problem by creating Virtual Reference Stations (VRS) using the SBAS signal [1]. VRS converts SBAS signal to RTCM signals corresponding its location, and broadcast the converted RTCM signals over the wireless internet. This method can solve the visibility problem cost effectively. Furthermore it can solve DGNSS coverage problem by creating just a transmitter instead of a reference station. Developing above method, this paper proposes the methods that integrate two or more SEAS signals into one RTCM signal and broadcast it. In Korea, MSAS signal is available even though it is not officially certified for Korean users. As a Korean own SBAS-like system, there is the internet-based KWTB (Korean WADGPS Test Bed) which we developed and released at ION GNSS 2006. As a result, virtually two different SBAS corrections are available in Korea. In this paper, we propose the integration methods for these two independent SBAS corrections and present the test results using the actual measurements from the two systems. We present the detailed algorithm for these two methods and analyze the features and performances of them. To verify the proposed methods, we conduct the experiment using the logged SBAS corrections from the two systems and the RINEX data logged at Dokdo monitoring station in Korea. The preliminary test results showed the improved performance compared to the results from two independent systems, which shows the potential of our proposed methods. In the future, the newly developed SBASs will be available and the places which can access the multiple SBAS signals will increase. At that time, the integration or combination methods of two or more SBASs will become more important. Our proposed methods can be one of the useful solutions for that. As an additional research, we need to extend this research to the system level integration such as the concept of the decentralized W ADGPS.