• 제목/요약/키워드: Available Transfer Capability(ATC)

검색결과 38건 처리시간 0.027초

이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정 (Calculation of CBM, TRM and ATC using Quadratic Function Approximation)

  • 이효상;신상헌;신동준;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권5호
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.

연계계통에서 가용송전용량 평가를 위한 최적화 알고리즘의 비교 (Comparison of Optimization Algorithms for Available Transfer Capability Assessment in Interconnected Systems)

  • 김규호;송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권12호
    • /
    • pp.549-554
    • /
    • 2006
  • Available transfer capability(ATC) is an important indicator of the usable amount of transmission capacity accessible by several parties for commercial trading in power transaction activities. This paper deals with an application of optimization technique for available transfer capability(ATC) calculation and analyzes the results of ATC by considering several constraints. Especially several optimization techniques are used to solve the ATC problem with state-steady security constraints. The results are compared with that of repeat power flow(RPF), sequential quadratic programming(SQP) and linear programming(LP). The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

확률론적 기법을 이용한 시변 가용송전용량 결정 (Probabilistic Approach to Time Varying Available Transfer Capability Calculation)

  • 신동준;김규호;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권11호
    • /
    • pp.533-539
    • /
    • 2005
  • According to NERC definition, Available Transfer Capability (ATC) is a measure of the transfer capability remaining in the physical transmission network for the future commercial activity. To calculate Available Transfer Capability, accurate and defensible Total Transfer Capability, Capacity Benefit Margin and Transmission Reliability Margin should be calculated in advance. This paper proposes a method to quantify time varying Available Transfer Capability based on probabilistic approach. The uncertainties of power system and market are considered as complex random variables. Total Transfer Capability is determined by optimization technique such as SQP(Sequential Quadratic Programming). Transmission Reliability Margin with the desired probabilistic margin is calculated based on Probabilistic Load Flow analysis, and Capacity Benefit Margin is evaluated using LOLE of the system. Suggested Available Transfer Capability quantification method is verified using IEEE RTS with 72 bus. The proposed method shows efficiency and flexibility for the quantification of Available Transfer Capability.

전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구 (A Study of TRM and ATC Determination for Electricity Market Restructuring)

  • 이효상;최진규;신동준;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구 (A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method)

  • 김재현;정성원;김양일
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.94-100
    • /
    • 2008
  • 가용송전용량(ATC)은 계통내의 한 지역에서 다른 지역까지 실제 전력을 증가시키는 것이다. 지금까지 ATC 계산은 대부분 정상상태에서 실행가능성을 주로 고려하여 계산되어 왔다. 하지만 ATC 평가시 과도안정도로 제약된 ATC 계산은 매우 중요한 부분이다. ATC 평가시에는 제약조건으로 열적용량, 전압 및 과도안정도로 제약된 상정사고(n-1)시 안전도 평가가 요구된다. 본 논문은 자코비안 행렬의 고유치를 이용하여 상정사고 우선순위를 선정하였고, 에너지 함수법을 이용하여 선로의 열적용량, 전압안정도 및 과도안정도를 고려한 ATC를 계산하였다.

가용 송전 능력(Available Transfer Capability : ATC)의 증대 방안에 대한 연구 (Study for Increment Method of ATC (Available Transfer Capability))

  • 이영호;백영식;송경빈;추진부;원종률
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.55-57
    • /
    • 2001
  • In this paper, algorithm for increment of ATC is proposed. ATC of the power transfer system is determined by the smallest ATC among transmission lines' in the power transfer system. So power flow of that transmission line shall be decreased to increase ATC, using the redistribution of each generation power with liner programing method. By the studying example case, $10\sim20%$ increment of ATC is confirmed in the power transfer system.

  • PDF

가용송전용량을 고려한 각 발전회사의 발전비용 최소화 기법 개발에 관한 연구 (A Study on the Minimization of Generation Cost of an Individual Power Generation Considering Available Transfer Capability(ATC))

  • 정성원;김재현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권12호
    • /
    • pp.586-591
    • /
    • 2005
  • This paper presents a method of minimizing of generation cost on individual electrical power utility. The method is based on the Economic Dispatch (ED) and linear Available Transfer Capability (ATC). The economic dispatch redistributes the total load to individual units to minimize the generation cost without transmission network constraints. The proposed method is implemented using ATC calculated from Power Transfer Distribution Factor (PTDF) for the transmission network constraints. The performance of the proposed method has been tested for the IEEE-30 bus system. It has also been observed that the results of the proposed method is compared with that of optimal power flow.

확률론적 기법을 이용한 시변 ATC 용량 결정 (Probabilistic approach to time varying Available Transfer Capability calculation)

  • 신동준;이준경;이효상;김진오;정현수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.645-647
    • /
    • 2004
  • According to NERC definition, Available Transfer Capability (ATC) is a measure of the transfer capability remaining in the physical transmission network for the future commercial activity To calculate ATC, accurate and defensible TTC, CBM and TRM should be calculated in advance. This paper proposes a method to quantify time varying ATC based on probabilistic approach. The uncertainties of power system and market are considered as complex random variables. TRM with the desired probabilistic margin is calculated based on PLF analysis, and CBM is evaluated using LOLE of the system. Suggested ATC quantification method is verified using IEEE RTS with 72 bus. The proposed method shows efficiency and flexibility for the quantification of ATC.

  • PDF

과도 안정도를 고려한 가용송전용량(ATC) 계산에 관한 연구 (A Study on The Available Transfer Capability(ATC) with Transient Stability Constraints)

  • 김양일;정성원;김재현
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.437-443
    • /
    • 2009
  • In recent years, electric power systems have been experiencing a rapid change due to the increasing electricity market. For the effective use of power system under the deregulated environment, it is important to make a fast and accurate calculation of the maximum available transfer capability (ATC) from a supply point to a demand point. In this paper, the purpose of this research is to calculate ATC fast and accurately for securing the stability of system and raising the efficiency as a result of anticipating transmission congestion according to transmission open access progressed in the future under the regulated environment of electricity market. In this paper, a study utilized a relation of the potential energy and energy function by which calculated CCT and then utilized a relation of PEBS for transient stability ATC calculation. In this paper, ATC was calculated as RPF and Energy Function method and calculation results of each method was compared. Contingence ranking method decided the weak bus by the Eigenvalues of Jacobian matrix and overloading branches by PI-index. As a result, a study proved the fast and accurate ATC calculation method considering transient stability suggested in this paper. Through the case study using New England 39 bus system, it is confirmed that the proposed method can be used for real time operation and the planning of electric market.

Available Transfer Capability Enhancement with FACTS Devices in the Deregulated Electricity Market

  • Manikandan, B.V.;Raja, S. Charles;Venkatesh, P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.14-24
    • /
    • 2011
  • In order to facilitate the electricity market operation and trade in the restructured environment, ample transmission capability should be provided to satisfy the demand of increasing power transactions. The conflict of this requirement and the restrictions on the transmission expansion in the restructured electricity market has motivated the development of methodologies to enhance the available transfer capability (ATC) of existing transmission grids. The insertion of flexible AC transmission System (FACTS) devices in electrical systems seems to be a promising strategy to enhance single area ATC and multi-area ATC. In this paper, the viability and technical merits of boosting single area ATC and multi-area ATC using Thyristor controlled series compensator (TCSC), static VAR compensator (SVC) and unified power flow controller (UPFC) in single device and multi-type three similar and different device combinations are analyzed. Particle swarm optimization (PSO) algorithm is employed to obtain the optimal settings of FACTS devices. The installation cost is also calculated. The study has been carried out on IEEE 30 bus and IEEE 118 bus systems for the selected bilateral, multilateral and area wise transactions.