• Title/Summary/Keyword: Available Safe Egress Time (ASET)

Search Result 18, Processing Time 0.027 seconds

Fire Growth of Wood Cribs and Available Safe Egress Time (목재연소시의 실내화재성상과 안전대피시간)

  • 정길순;태순호;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.72-77
    • /
    • 1993
  • Available Safe Egress Time(ASET) is the time available for occupants to evacuate safely In compartment fire, and It depends on the time of fire detection and hazardous conditions. The purpose of thls study Is to provide an analytical basis and experimental data for estimating the fire growth in compartments and the available safe egress time, and to compare the experimental data with those proposed equations. As a result, hazard order Is poison to CO, descent of smoke layer, poison to $CO_2$, burn to hot smoke layer, and lack of $O_2$, ASET is lengthened in this order. Also, The more fire load is increased, the more ASET is shorted.

  • PDF

Egress Safety of Nursing Hospital Considering Egress Guides and Smoke Exhaust System (피난유도자 수와 배연설비를 고려한 요양병원의 피난안전성 평가)

  • Choi, Seung-Ho;Darkhanbat, Khaliunaa;Heo, Inwook;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.64-71
    • /
    • 2022
  • In this study, fire and egress simulation was conducted for the egress safety evaluation of the nursing hospitals. A fire simulation was performed with or without the smoke exhaust system using the FDS, and the available safe egress time (ASET) of the nursing hospitals was calculated. In addition, an egress simulation considering the characteristics of occupants and egress delay time was performed using Pathfinder, and the required safe egress time (RSET) was calculated. By comparing the ASET and RSET, the egress safety of the nursing hospital with or without a smoke exhaust system was evaluated according to the number of egress guides and the egress delay time. The simulation results show that the number of casualties increased as the egress delay time increased, and the required safe egress time decreased as the number of egress guides increased. In addition, it was found that if a smoke exhaust system with the capacity specified in the KFPA is secured, the available safe egress time can be greatly increased and the number of casualties can be greatly reduced.

Evaluation on Fire Available Safe Egress Time of Commercial Buildings based on Artificial Neural Network (인공신경망 기반 상업용 건축물의 화재 피난허용시간 평가)

  • Darkhanbat, Khaliunaa;Heo, Inwook;Choi, Seung-Ho;Kim, Jae-Hyun;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.111-120
    • /
    • 2021
  • When a fire occurs in a commercial building, the evacuation route is complicated and the direction of smoke and flame is similar to that of the egress route of occupants, resulting in many casualties. Performance-based evacuation design for buildings is essential to minimize human casualties. In order to apply the performance-based evacuation design to buildings, it requires a complex fire simulation for each building, demanding a large amount of time and manpower. In order to supplement this, it would be very useful to develop an Available Safe Egress Time (ASET) prediction model that can rationally derive the ASET without performing a fire simulation. In this study, the correlations between fire temperature with visibility and toxic gas concentration were investigated through a fire simulation on a commercial building, from which databases for the training of artificial neural networks (ANN) were created. Based on this, an ANN model that can predict the available safe egress time was developed. In order to examine whether the proposed ANN model can be applied to other commercial buildings, it was applied to another commercial building, and the proposed model was found to estimate the available safe egress time of the commercial building very accurately.

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.

A Study on ASET(available safe egress time) for Subway Station of Light Weight Railcar Using FDS (FDS를 이용한 경량철도 지하역사의 피난허용시간 연구)

  • Kim, Chi-Hun;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.361-366
    • /
    • 2011
  • 본 연구에서는 무인운영이 예정되어 있는 경량철도 지하역사 화재 시 안전대책을 강구하기 위하여 다양한 시나리오의 화재상황을 모사하여 FDS 사용코드를 이용해 화재유동현상을 분석하였다. 해석경계조건은 전동차 내부공간을 포함한 지하 3개 층과 설계에 반영된 환기설비를 적용하였으며, 약 500만 개의 격자를 34개 블록으로 나누어 계산하였다. 비상탈출 동선을 파악하여 주요 위치에서 피난경로상의 각 층 바닥으로 부터 1 m 높이의 한계온도와 연기층의 도달시간을 시나리오 별로 분석하여 보았다.

  • PDF

Study on the Available Safe Egress Time (ASET) Considering the Input Parameters and Model Uncertainties in Fire Simulation (화재시뮬레이션에서 입력변수 및 모델 불확실도가 고려된 허용피난시간(ASET)에 관한 연구)

  • Han, Ho-Sik;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.112-120
    • /
    • 2019
  • To improve the reliability of a safety assessment using a fire simulation in domestic PBD, the evaluation method of ASET considering the uncertainties of the input parameters and numerical model of fire simulation was carried out. To this end, a cinema and officetel were selected as the representative fire spaces. The main results were as follows. Considering the uncertainty of the heat release rate, which has the greatest effect on the major physical quantities presented in the life safety standard, significant changes in temperature, CO, and visibility occurred. In addition, when the bias factors reflecting the uncertainty of the numerical model were applied, there were no significant changes in temperature and CO concentration. On the other hand, the visibility was increased considerably due to the low prediction performance of smoke concentration in FDS. Finally, the reason why the physical quantity determining the ASET in domestic PBD is mainly visibility was discussed, and the application of uncertainty of the input parameters and numerical model in a fire simulation was suggested for an accurate ASET evaluation.

The Improvement of Evacuation Performance for Discount-Store in Underground (할인점 지하매장의 피난성능 개선에 관한 연구)

  • 김영일;윤명오;김종훈;김운형
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • This study aims to improve the Evacuation Performance o( the I)inc()unto-store in underground that is rapidly new shopping store in Korea. In this paper, The architectural properties of the floor plan and section was reviewed with egress focus, occupant load density of the Discount-store was surveyed and the procedure and method of performance based egress design for this occupancy was analysed with SIMULEX model and calculation method. As a result of modeling, more longer available safe egress time (ASET) is expected than required safe egress time (RSET)in underground discount-store. In order to improve the Evacuation Performance for this type occupancy, egress capacity including escape stair, aisle width, escape door is calculated with based on occupant load density and review of shopping cart's structure and size and maximum escape capacity of the cash counter.

  • PDF

Performance-based Fire Protection Design of Domestic Super High-rise Buildings - Evaluation by ASET and RSET -

  • Roh, Hyeong-Ki
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.9-13
    • /
    • 2011
  • The Performance-based fire protection design required to construct super high-rise building is the active measure for the evaluation of fire risks and the establishment of fire protection systems on the basis of engineering analysis, which is more efficient and proper than existing prescriptive-based design. This study applied time-line analysis of RSET is required safe egress time and ASET is available safe egress time with the fire and evacuation simulation to analyze. The result of this study showed the sprinkler system increased ASET and fire detection and alarm system reduced RSET efficiently. Reduced evacuation time influences to secure the life safety. Also it is essential to maintain the fire suppression system and fire detection & alarm system properly. Database of fire movement and evacuation action program are useful for the performance-based design.

Fire and Evacuation Analysis in Environmental Energy Facilities (환경에너지 시설내 화재 및 피난해석)

  • Jeon, Yong-Han;Kim, Jong-Yoon
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.84-90
    • /
    • 2019
  • In this study, a fire and evacuation inside an electronic equipment room in environmental energy facilities were conducted and evaluated using a numerical analysis method. In the fire simulation, the visual distance, temperature distribution, and CO concentration distribution were analyzed using FDS. Based on the results, the Pathfinder program, which is an evacuation simulation, was used to calculate the evacuation time of the occupants and derive an evacuation safety evaluation. As a result, the Available safe Egress time (ASET) of P-01 and P-05 was 203.3 and 398.6 s, respectively. For the Required safety Egress time (RSET) results, all evacuees were evacuated at all points and the safety of the evacuee was secured this simulation showed that the safety evaluation is based on the non - operation of the fire - fighting equipment to improve the safety, making it possible to secure better evacuation safety performance owing to the fire of other fire - fighting facilities.

A case study of fire risk analysis for train coach without gangway doors (철도차량 화재위험도 평가 사례 분석)

  • Lee, Duck-Hee;Kim, Chi-Hun;Kim, Jeong-Hun;Park, Won-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2232-2241
    • /
    • 2010
  • A case study of fire risk analysis was conducted for train coach which has no gangway doors between coaches. The analysis boundary was limited to the time of outgoing from the coaches for it was train fire risk analysis. ASET(available safe egress time) and RSET(required safe egress time) methodology was used for calculating the dead. 4 liters of gasoline and cable fire at the electric cabinet and the standard fire of EN 45545 were selected for the fire sources. The fire were considered to be occurred at 3 different locations in the car. The train had 3 cases of driving scenarios. The result of all event was summarized for remained tunnel and station egress step.

  • PDF