• 제목/요약/키워드: Auxin-response genes

검색결과 16건 처리시간 0.027초

Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

  • Cho, Song-Mi;Kang, Beom Ryong;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.209-220
    • /
    • 2013
  • Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

Isolation and Characterization of ACC Synthase Gene Family in Mung Bean (Vigna radiata L.): Differential Expression of the Three ACC Synthase enes in Response to Auxin and Brassinosteroid

  • Sunjoo Joo;Kim, Woo-Taek
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.61-71
    • /
    • 2000
  • By screening a cDNA library of auxin-treated mung bean (Vigna radiata L.) hypocotyls, we have isolated two full-length cDNA clones, pVR-ACS6 and pVR-ACS7, for 1-aminocyclopropane-1-carboxylate (ACC) synthase, the rate-limiting enzyme in the ethylene biosynthetic pathway. While PVR-ACS6 corresponds to the previously identified PCR fragment pMBA1, pVR-ACS7 is a new cDNA clone. A comparison of deduced amino acid sequences among auxin-induced ACC synthases reveal that these enzymes share a high degree of homology (65-75%) to VR-ACS6 and VR-ACS7 polypeptides, but only about 50% to VR-ACS1 polypeptide. ACS6 and ACS7 are specifically induced by auxin, while ACS1 is induced by cycloheximide, and to lesser extent by excision and auxin treatment. Results from nuclear run-on transcription assay and RNA gel blot studies revealed that all three genes were transcriptionally active displaying unique patterns of induction by IAA and various hormones in etiolated hypocotyls. Particularly, 24-epibrassinolide (BR), an active brassinosteroid, specifically enhanced the expression of VR-ACS7 by distinct temporal induction mechanism compared to that of IAA. In addition, BR synergistically increased the IAA-induced VR-ACS6 and VR-ACS7 transcript levels, while it effectively abolished both the IAA- and kinetin-induced accumulation of VR-ACS1 mRNA. In light-grown plants, VR-ACS1 was induced by IAA in roots, whereas W-ACS6 in epicotyls. IAA- and BR-treatments were not able to increase the VR-ACS7 transcript in the light-grown tissues. These results indicate that the expression of ACC synthase multigene family is regulated by complex hormonal and developmental networks in a gene- and tissue-specific manner in mung bean plants. The VR-ACS7 gene was isolated, and chimeric fusion between the 2.4 kb 5'-upstream region and the $\beta$-glucuronidase (GUS) reporter gene was constructed and introduced into Nicotiana tobacum. Analysis of transgenic tobacco plants revealed the VR-ACS7 promoter-driven GUS activity at a highly localized region of the hypocotyl-root junction of control seedlings, while a marked induction of GUS activity was detected only in the hypocotyl region of the IAA-treated transgenic seedlings where rapid cell elongation occurs. Although there was a modest synergistic effect of BR on the IAA-induced GUS activity, BR alone failed to increase the GUS activity, suggesting that induction of VR-ACS7 occurs via separate signaling pathways in response to IAA and BR.

  • PDF

Overexpression of GmAKR1, a Stress-Induced Aldo/keto Reductase from Soybean, Retards Nodule Development

  • Hur, Yoon-Sun;Shin, Ki-Hye;Kim, Sunghan;Nam, Kyoung Hee;Lee, Myeong-Sok;Chun, Jong-Yoon;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.217-223
    • /
    • 2009
  • Development of symbiotic root nodules in legumes involves the induction and repression of numerous genes in conjunction with changes in the level of phytohormones. We have isolated several genes that exhibit differential expression patterns during the development of soybean nodules. One of such genes, which were repressed in mature nodules, was identified as a putative aldo/keto reductase and thus named Glycine max aldo/keto reductase 1 (GmAKR1). GmAKR1 appears to be a close relative of a yeast aldo/keto reductase YakC whose in vivo substrate has not been identified yet. The expression of GmAKR1 in soybean showed a root-specific expression pattern and inducibility by a synthetic auxin analogue 2,4-D, which appeared to be corroborated by presence of the root-specific element and the stress-response element in the promoter region. In addition, constitutive overexpression of GmAKR1 in transgenic soybean hairy roots inhibited nodule development, which suggests that it plays a negative role in the regulation of nodule development. One of the Arabidopsis orthologues of GmAKR1 is the ARF-GAP domain 2 protein, which is a potential negative regulator of vesicle trafficking; therefore GmAKR1 may have a similar function in the roots and nodules of legume plants.

애기장대 histidine kinase 3 (AHK3)의 특성과 결손돌연변이체인 ahk3의 프로테옴 분석 (Characterization of Arabidopsis Histidine Kinase 3 and Proteomic Analysis of Its Mutant)

  • 양영실;차준영;네티 엘마와티;정민희;이곤호;손대영
    • 생명과학회지
    • /
    • 제16권3호
    • /
    • pp.447-453
    • /
    • 2006
  • Histidine kinase는 식물의 신호전달기작에서 매우 중요한 역할을 한다. 본 연구에서는 애기장대 histidine kinase 3 (AHK3)의 식물체내에서의 기능을 조사하였으며 이 유전자의 결손 돌연변이체인 ahk3에 trans-zeatin (t-zeatin)을 처리하여 유전자와 단백질의 발현양상을 분석하였다. ahk3는 야생형 식물체에 비하여 캘러스 형성, 유모의 성장, 잎의 노화과정에서 t-zeatin에 대한 감수성이 줄어들었다. 프로테옴 분석 결과 eukaryotic translation initiation factor 5A-2, auxin binding glutathione S-transferase, NDPK1 등은 야생형의 애기장대에서는 t-zeatin에 의하여 발현이 증가하는 반면 ahk3에서는 증가하지 않는 것으로 나타났다. 또한 cytokinin처리에 의하여 발현이 증가하는 것으로 보고된 A-type response regulator들 중에서 ARR4와 ARR16의 발현양이 ahk3에서는 현저하게 감소하는 것으로 나타났다. 이러한 결과들은 AHK3가 cytonin신호전달기작에서 매우 중요한 역할을 하며, 프로테옴 분석에 의하여 동정된 단백질들과 ARR4, ARR16은 AHK3에 의해 매개되는 cytokinin 신호전달과정에서 중요한 역할을 할 것으로 생각된다.

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem;Yookyung Lim;Jeongeui Hong;Wonsil Bae;Jinsu Lee;Soeun Han;Jinsu Gil;Hyunwoo Cho;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.220-228
    • /
    • 2024
  • Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.

유식물 발달과정에서 브라시노스테로이드와 앱시스산 신호전달의 상호작용 연구 (Interplay between Brassinosteroid and ABA signaling during early seedling development)

  • 김혜민;홍정의;조용구;강권규;류호진
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.264-270
    • /
    • 2017
  • 식물의 유일한 활성 스테로이드 호르몬인 Brassinosteroid (BR)는 다양한 내재적 또는 외부 신호 전달 경로와의 통합적인 결합을 통해 식물의 생장 및 발달 과정에서 중요한 기능을 하는 것으로 알려져 있다. 최근 식물학 연구들은 종자의 발아와 초기 발달과정에서 BR과 ABA 사이의 필수적인 상호작용 메커니즘이 존재하고 있음을 보고하고 있다. 하지만 이들 두 호르몬의 중요한 신호전달 상호작용에 대한 분자 메커니즘은 거의 알려지지 않았다. 식물의 초기 발달과정에서 BR에 의해 매개되는 ABA 신호전달과의 기능학적, 생물학적 상호작용 네트워크를 이해하기 위해 Agilent Arabidopsis $4{\times}44K$ 올리고 칩을 사용하여 비교 전사체 분석을 수행하였다. ABA에 반응하지 않는 bes1-D 돌연변이체에서의 ABA 처리에 따른 다양한 유전자의 발현 패턴을 야생형 식물과 비교 분석하였다. 그 결과 발현의 변화가 발생하는 유전자(DEGs) 2,353개를 확인하였다. GO 분석을 통해 ABA 신호전달 및 대사에 관여하는 유전자들이 BR 신호전달 경로에 의해 하향 조절되는 것으로 확인되었다. 뿐만 아니라, BR 신호전달 경로는 다양한 비생물학적/생물학적 스트레스, 오옥신 및 ROS 등 다양한 신호전달 체계와 밀접하게 연관되어 있음을 확인하였다. 본 연구를 통해 BR 신호전달의 활성화는 ABA 신호전달에 관여하는 다양한 유전자들의 발현을 억제함을 확인하였다. 또한 본 연구는 다양한 신호 경로 사이의 상호작용이 다양한 환경요인에 대한 식물의 적응 반응에 중요하게 작용할 수 있음을 보여주고 있다.