• 제목/요약/키워드: Autosomal Dominant Inherited

검색결과 66건 처리시간 0.022초

상염색체 우성으로 유전된 칼만 증후군 1례 (A Case of Kallmann Syndrome Inherited in Autosomal Dominant Mode)

  • 남윤성;이숙환;이우식;박찬;김종욱;차광열
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제26권3호
    • /
    • pp.491-495
    • /
    • 1999
  • Objective: To report the pedigree of Kallmann syndrome inherited in autosomal dominant mode with variable expressivity. Material and Method: Case report. Results: The patient had amenorrhea and anosmia but did not have a sign of absolute hypo gonadotropic hypogonadism. Her father had an anosmia and her two elderly sisters also had an anosmia but delivered babies uneventfully. Her two male siblings did not show any signs of hypogonadotropic hypogonadism. Conclusion: Kallmann syndrome has many different modes of inheritance such as autosomal dominant, autosomal recessive, and X-linked form. So the careful investigation of family pedigree is required.

  • PDF

초음파 검사에서 성인의 다낭성 간질환에 대한 고찰 (Review of Adult Polycystic Liver Disease on Ultrasonography)

  • 심현선;정홍량;임청환
    • 한국콘텐츠학회논문지
    • /
    • 제8권10호
    • /
    • pp.217-223
    • /
    • 2008
  • 성인형 다낭성 간질환(adult polycystic liver disease, PLD)은 양성 질환으로 매우 드물고 상염색체우성 다낭성 신장질환(autosomal dominant polycystic kideny disease, ADPKD)을 동반한다. 다낭성 간질환(PLD)은 간실질에 여러 개의 미만성 낭성질환을 특징으로 하는 상염색체우성 유전성 질환이다. 간과 관련된 중요한 증상 또는 합병증이 발생할 수 있으며 이로 인하여 복강경 또는 간을 절제하거나 또는 절제 없이 천공설치술을 포함하는 치료가 이루어지며 간이식도 할 수 있다. 본 고찰에서는 복부 불쾌감이 있는 성인형 다낭성 간질환을 경험하였기에 초음파 검사와 복부 CT 소견에 대해 참고 문헌과 함께 보고하고자 한다.

가족성 근위축성측삭경화증을 유발시키는 두 번째 유전자 위치 (Second locus for late-onset familial Amyotrophic Lateral Sclerosis)

  • 홍성출
    • 생명과학회지
    • /
    • 제11권3호
    • /
    • pp.279-283
    • /
    • 2001
  • Amyotrophic lateral sclerosis(ALS) is a progressive neurologic disorder resulting from the degeneration of upper and lower motor neurons, and is inherited in 10% of cases. About 20% of familial ALS, clinically indistinguishable from sporadic ALS, is caused by mutations of Cu/Zn superoxide dismutase on chromosome 21q22.21 inherited as an autosomal dominant trait. We now report a new locus in the non-SOD1 dominantly inherited ALS. We screened a large ALS family with 11 affected individuals and one obligate gene carrier with genome-wide ABI polymorphic markers using the ABI 377 automated system. No evidence of linkage was obtained with the autosomal markers. We next screened this family with X chromosome markers as there was no evidence of male-to-male tran-smission of the disease. Linkage was established with several X chromosome markers with a lod score up to 3.8; almost the maximum possible score in this family. Our finding imply that a gene for the dominant expression of a neuronal degeneration is coded on X chromosome and raise the question of the role of X-linked genes that escape inactivation in this pathogenesis. More importantly, our finding that a gene causing ALS is localized on X-chromosome has direct investigational relevance to sporadic ALS, where epidemiological studies show male gender predominance(1.3:1) and earlier onset in men by 5-10 years.

  • PDF

Importance of family segregation in the American College of Medical Genetics and Genomics and Association of Molecular Pathology guidelines: Case of a Korean family with autosomal dominant polycystic disease

  • Kwon, Won Kyung;Kim, Suhee;Jang, Ja-Hyun;Kim, Jong-Won
    • Journal of Genetic Medicine
    • /
    • 제17권1호
    • /
    • pp.51-54
    • /
    • 2020
  • Since the American College of Medical Genetics and Genomics and Association of Molecular Pathology published their guidelines in 2015, most interpretations of genetic tests have followed them. However, all variants have only limited evidence along 28 interpretation standards, especially de novo variants. When de novo variants, which are classified as variants of uncertain significance (VUS) due to lack of evidence, are detected, segregation in the affected family could provide an important key to clarifying the variants. Autosomal dominant polycystic kidney disease is the most common inherited kidney disorder with pathogenic variants in the PKD1 or PKD2 genes. We detected a novel in-frame deletion variant in the PKD1 gene, c.7575_7577del (p.(Cys2526del)), which was interpreted as a VUS. We analyzed this variant in a Korean family to decide for segregation. Here, we report the variant as a likely pathogenic variant based on the evidence of segregation in three affected relatives and two unaffected members.

Characterization of Microsatellite Markers Closely Linked with PKD Loci in the Korean Population

  • Kim, Un-Kyung;Lee, Kyu-Beck
    • Animal cells and systems
    • /
    • 제10권2호
    • /
    • pp.65-71
    • /
    • 2006
  • Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common inherited renal disorders in the world. Mutations in PKD1 located on chromosome 16p13.3 are responsible for 85% of all the ADPKD patients whereas mutations in PKD2 on chromosome 4q21-23 are responsible for the rest of the cases. Genetic heterogeneity and the problems of mutation detection in PKD1 suggest that linkage analysis is an important approach to study the genetics of ADPKD. To evaluate the availability of six (CA)n microsatellite markers for the linkage analysis of ADPKD in the Korean population, we examined the allele frequencies and heterozygosities of the markers. With the exception of KG8, five markers were highly informative, with PIC values over 0.5, but the PIC value of KG8 marker was less informative than other five markers because of the low number of alleles. Therefore, this study will be useful in linkage analysis for ADPKD families in the Korean population.

Tubulopathy: the clinical and genetic approach in diagnosis

  • Jinwoon Joung;Heeyeon Cho
    • Childhood Kidney Diseases
    • /
    • 제27권1호
    • /
    • pp.11-18
    • /
    • 2023
  • Remarkable advances in genetic diagnosis expanded our knowledge about inherited tubulopathies and other genetic kidney diseases. This review suggests a simple categorization of inherited tubular disease, clarifies the concept of autosomal dominant tubulointerstitial kidney disease (ADTKD), and introduces novel therapies developed for tubulopathies. Facing patients with suspicious tubular disorders, clinicians should first evaluate the status of volume and acid-base. This step helps the clinicians to localize the affected segment and to confirm genetic diagnosis. ADTKD is a recently characterized disease entity involving tubules. The known causative genes are UMOD, MUC1, REN, and HNF1β. Still, only half of ADTKD patients show mutations for these four identified genes. Whole exome sequencing is a suitable diagnostic tool for tubulopathies, especially for ADTKD. Genetic approaches to treat tubulopathies have progressed recently. Despite the practical obstacles, novel therapies targeting inherited tubulopathies are currently in development.

샤르코-마리-투스 질환의 진단 및 치료 (Diagnosis and treatment in Charcot-Marie-Tooth disease)

  • 김상범;박기덕;최병옥
    • Annals of Clinical Neurophysiology
    • /
    • 제7권2호
    • /
    • pp.65-74
    • /
    • 2005
  • Charcot-Marie-Tooth (CMT) disease was described by Charcot and Marie in France and, independently, by Tooth in England in 1886. CMT is the most common form of inherited motor and sensory neuropathy, and is a genetically heterogeneous disorder of the peripheral nervous system. Therefore, many genes have been identified as CMT-causative genes. Traditionally, subclassification of CMT have been divided into autosomal dominant inherited demyelinating (CMT1) and axonal (CMT2) neuropathies, X-linked neuropathy (CMTX), and autosomal recessive inherited neuropathy (CMT4). Recently, intermediate type (CMT-Int) with NCVs between CMT1 and CMT2 is considered as a CMT type. There are several related peripheral neuropathies, such as $D{\acute{e}}j{\acute{e}}rine$-Sottas neuropathy (DSN), congenital hypomyelination (CH), hereditary neuropathy with liability to pressure palsies (HNPP) and giant axonal neuropathy (GAN). Great advances have been made in understanding the molecular basis of CMT, and 17 distinct genetic causes of CMT have been identified. The number of newly discovered mutations and identified genetic loci is rapidly increasing, and this expanding list has proved challenging for physicians trying to keep up with the field. Identifying the genetic cause of inherited neuropathies is often important to determine at risk family members as well as diagnose the patient. In addition, the encouraging studies have been published on rational potential therapies for the CMT1A. Now, we develop a model of how the various genes may interact in the pathogenesis of CMT disorder.

  • PDF

Clinical impact of cerebral microbleeds on cognition in patients with CADASIL

  • Lee, Jung Seok;Ko, Keun Hyuk;Oh, Jung-Hwan;Choi, Jay Chol;Kim, Joong-Goo
    • Journal of Medicine and Life Science
    • /
    • 제15권2호
    • /
    • pp.89-94
    • /
    • 2018
  • Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is inherited microangiopathy caused by mutations in the Notch3 gene. Typical findings from brain magnetic resonance imaging (MRI) include subcortical lacunes, extensive white matter change and cerebral microbleeds(CMBs). CMBs are indicative of bleeding-prone microangiopathy. Despite some studies investigating the association between lacunes and cognitive dysfunction in CADASIL, few studies have examined the relationship between cognitive dysfunction and CMBs. We sought to assess whether CMBs are associated with cognitive dysfunction in CADASIL. This study enrolled 83 consecutive patients with CADASIL between April 2012 and January 2014. Their degree of cognitive dysfunction was assessed by the Korean version of the CERAD neuropsychological assessment battery, digit span test, and the Stroop test. A 3.0-T MRI was used to obtain T1-weighted, fluid-attenuated inversion recovery, and susceptibility weighted images. In multiple logistic regression analysis, the grade of CMBs influenced tests of memory dysfunction (p=0.003). Three or more lacunes correlated with dysfunction in the executive domain (p=0.013) and attention domain (p=0.005). White matter hyperintensity (WMH) was an independent predictor of executive dysfunction (p=0.001). These findings suggest that in addition to lacunes, CMBs and WMHs may be useful imaging markers to associated with cognitive dysfunction in CADASIL.

Hb Dieppe에 의한 우성유전 베타 지중해빈혈 1례 (A Case of Dominantly Inherited β Thalassemia Due to Hb Dieppe)

  • 최유경;이홍진;박원일;이경자;강성하;김지연;박성섭
    • Clinical and Experimental Pediatrics
    • /
    • 제45권5호
    • /
    • pp.659-663
    • /
    • 2002
  • 저자들은 상염색체 우성으로 유전되는 경한 저색소성 소구성 빈혈을 보이고 ${\beta}$ 유전자의 127번째 코돈 이 CAG에서 CGG로 치환되는 과오돌연변이로 인하여 매우 불안정한 베타 사슬 변이체를 만드는 우성유전 베타 지중해빈혈을 경험하였기에 문헌고찰과 함께 보고하는 바이다.

De novo mutations in COL4A5 identified by whole exome sequencing in 2 girls with Alport syndrome in Korea

  • Han, Kyoung Hee;Park, Jong Eun;Ki, Chang-Seok
    • Clinical and Experimental Pediatrics
    • /
    • 제62권5호
    • /
    • pp.193-197
    • /
    • 2019
  • Alport syndrome (ATS) is an inherited glomerular disease caused by mutations in one of the type IV collagen novel chains (${\alpha}3$, ${\alpha}4$, and ${\alpha}5$). ATS is characterized by persistent microscopic hematuria that starts during infancy, eventually leading to either progressive nephritis or end-stage renal disease. There are 3 known genetic forms of ATS, namely X-linked ATS, autosomal recessive ATS, and autosomal dominant ATS. About 80% of patients with ATS have X-linked ATS, which is caused by mutations in the type IV collagen ${\alpha}5$ chain gene, COL4A5. Although an 80% mutation detection rate is observed in men with X-linked ATS, some difficulties do exist in the genetic diagnosis of ATS. Most mutations are point mutations without hotspots in the COL4A3, COL4A4, and COL4A5 genes. Further, there are insufficient data on the detection of COL4A3 and COL4A4 mutations for their comparison between patients with autosomal recessive or dominant ATS. Therefore, diagnosis of ATS in female patients with no apparent family history can be challenging. Therefore, in this study, we used whole-exome sequencing (WES) to identify mutations in type IV collagen in 2 girls with glomerular basement membrane structural changes suspected to be associated with ATS; these patients had no relevant family history. Our results revealed de novo c.4688G>A (p.Arg1563Gln) and c.2714G>A (p.Gly905Asp) mutations in COL4A5. Therefore, we suggest that WES is an effective approach to obtain genetic information in ATS, particularly in female patients without a relevant family history, to detect unexpected DNA variations.