Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
Journal of Information Processing Systems
/
v.15
no.5
/
pp.1201-1210
/
2019
Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.
This paper analyses the effect of R&D investment on local economies. R&D investment contributes to the regional local economy by increasing employment and production activity of the investees. The investees may end up with increased productivity, sales and employment. At the regional R&D level, the central government R&D fund and firm self R&D budget will be the source of R&D investment. Further positive effects are inter-related with local industries. This study carried out an empirical analysis on the effect of R&D investment on local economies using Korean panel data after comparing international literatures. The dynamic panel estimator is used to estimate an autoregressive model with lagged dependent variable. Using the Da Silva method, mixed variance-component moving-average error process is estimated and selected. R&D investment is very important factor to improve the productivity of a region and the size of the effect is dependent on the time periods within the Korean economic history.
Detecting intrusion attacks accurately and rapidly in wireless networks is one of the most challenging security problems. Intrusion attacks of various types can be detected by the change in traffic flow that they induce. Wireless industrial networks based on the wireless networks for industrial automation-process automation (WIA-PA) standard use a superframe to schedule network communications. We propose an intrusion detection system for WIA-PA networks. After modeling and analyzing traffic flow data by time-sequence techniques, we propose a data traffic prediction model based on autoregressive moving average (ARMA) using the time series data. The model can quickly and precisely predict network traffic. We initialized the model with data traffic measurements taken by a 16-channel analyzer. Test results show that our scheme can effectively detect intrusion attacks, improve the overall network performance, and prolong the network lifetime.
This paper presents a correction technique of missing load data. In this paper, the ARIMA(Autoregressive Integrated Moving Average) model and Piecewise Cubic Interpolation are applied to seek the missing parameters. The new model has been tested under a variety of conditions and it is shown in this paper to produce excellent results. It is helpful for operators to designed the load duration curve.
Most systems in tile real world are non-linear and can be represented by the non-linear autoregressive moving average (NARMA) model. The extension of fuzzy system for modeling the system that is represented by NARMA model will be proposed in this paper. Here, fuzzy basis function (FBF) is used as fuzzy NARMA(p,q) model. Then, an approach to Identify fuzzy NARMA models based on fuzzy basis functions is proposed. The efficacy of the proposed approach is shown from experimental results.
In this paper, our concern is the artificial neural network-based patten classification, when can resolve the difficulties in the Autoregressive Moving Average(ARMA) model identification problem To effectively classify a time series into an approriate ARMA model, we adopt the Multi-layered Backpropagation Network (MLBPN) as a pattern classifier, and Extended Sample Autocorrelation Function (ESACF) as a feature extractor. To improve the classification power of MLBPN's we suggest an integrated neural network system which consists of an AR Network and many small-sized MA Networks. The output of AR Network which will gives the MA order. A step-by-step training strategy is also suggested so that the learned MLBPN's can effectively ESACF patterns contaminated by the high level of noises. The experiment with the artificially generated test data and real world data showed the promising results. Our approach, combined with a statistical parameter estimation method, will provide a way to the automation of ARMA modeling.
In recent years, many organizations have been constructing their own large corpora to achieve corpus representativeness. However, there is no reliable guideline as to how large corpus resources should be compiled, especially for Korean corpora. In this study, we have contrived a new statistical model, ARIMA (Autoregressive Integrated Moving Average), for predicting the relationship between linguistic items (the number of types) and corpus size (the number of tokens), overcoming the major flaws of several previous researches on this issue. Finally, we shall illustrate that the ARIMA model presented is valid, accurate and very reliable. We are confident that this study can contribute to solving some inherent problems of corpus linguistics, such as corpus predictability, corpus representativeness and linguistic comprehensiveness.
Box-Jenkins 시계열 분석법은 변수에 관한 정보가 부족하거나 너무 많은 변수가 영향을 미치고 있는 경우에도 과학적인 예측치를 구할 수 있는 단기예측 방법이다. Box-Jenkins 모형은 자동회귀 모형(Autoregressive Model), 이동평균 모형 (Moving average Model), 계절적 시계열 모형을 통합한 일반적인 모형이기 때문에 특별한 불안정성을 보이지 않는 경우에는 모두 모형화 할 수 있으며, 모형에 관계된 계수의 수를 최소화 하면서 만족스러운 모형을 찾을 수 있다. Box-Jenkins예측방법은 모형선정, 매개변수추정, 적합성 검정의 3단계를 반복으로 수행함으로써 최적모형에 이르게 하게 하고 있기 때문에 최소의 가능한 모형으로부터 시작하여 부적당한 부분을 제거시켜 나감으로써 시행착오의 과정을 최소화 할 수 있다. 일반 사용자가 Box-Jenkins 시계열 분석법을 쉽게 사용할 수 있도록 Box-Jenkins Package가 개발되었으며 여기서는 KAIST 전산 개발 센터에 설치된 Package를 소개하고 그 사용예를 보였다.
In this research, two stochastic models are considered to detect and estimate the effect of air temperature change due to Industrialization In Ulsan area. Using the monthly mean minimum air temperature anomalies, the data are divided Into pre-Industrialization part and Industrialization one for analysis. The ARM(autoregressive moving-average) model and intervention model have been applied to the data for the analysis. The results show that the variability of minimum temperature anomalies are very significant In 1989, and also significant In 1971 when the Industrialization have started. Therefore, It Is stochastically possible to estimate the time when the affection of Increase of the temperature concerning Industrialization to climate change In Usm area has happened.
Journal of the Korean Society for Precision Engineering
/
v.11
no.2
/
pp.85-94
/
1994
The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.