• Title/Summary/Keyword: Autoregressive moving average model

Search Result 151, Processing Time 0.027 seconds

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.

A Study on Forecast of Oyster Production using Time Series Models (시계열모형을 이용한 굴 생산량 예측 가능성에 관한 연구)

  • Nam, Jong-Oh;Noh, Seung-Guk
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.185-195
    • /
    • 2012
  • This paper focused on forecasting a short-term production of oysters, which have been farmed in Korea, with distinct periodicity of production by year, and different production level by month. To forecast a short-term oyster production, this paper uses monthly data (260 observations) from January 1990 to August 2011, and also adopts several econometrics methods, such as Multiple Regression Analysis Model (MRAM), Seasonal Autoregressive Integrated Moving Average (SARIMA) Model, and Vector Error Correction Model (VECM). As a result, first, the amount of short-term oyster production forecasted by the multiple regression analysis model was 1,337 ton with prediction error of 246 ton. Secondly, the amount of oyster production of the SARIMA I and II models was forecasted as 12,423 ton and 12,442 ton with prediction error of 11,404 ton and 11,423 ton, respectively. Thirdly, the amount of oyster production based on the VECM was estimated as 10,425 ton with prediction errors of 9,406 ton. In conclusion, based on Theil inequality coefficient criterion, short-term prediction of oyster by the VECM exhibited a better fit than ones by the SARIMA I and II models and Multiple Regression Analysis Model.

Mass Estimation of a Permanent Magnet Linear Synchronous Motor by the Least-Squares Algorithm (선형 영구자석 동기전동기의 최소자승법을 적용한 질량 추정)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.159-163
    • /
    • 2006
  • In order to tune the speed controller in the linear servo applications an accurate information of a mover mass including a load mass is always required. This paper suggests the mass estimation method of a permanent magnet linear synchronous motor(PMLSM) 4y using the parameter estimation method of Least-Squares algorithm. First, the deterministic autoregressive moving average(DARMA) model of the mechanical dynamic system is derived. Then the application of the Least-Squares algorithm shows that the mass can be accurately estimated both in the simulation results and in the experimental results.

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method

  • Mahmud, Ishtiak;Bari, Sheikh Hefzul;Rahman, M. Tauhid Ur
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • Rainfall is one of the most important phenomena of the natural system. In Bangladesh, agriculture largely depends on the intensity and variability of rainfall. Therefore, an early indication of possible rainfall can help to solve several problems related to agriculture, climate change and natural hazards like flood and drought. Rainfall forecasting could play a significant role in the planning and management of water resource systems also. In this study, univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to forecast monthly rainfall for twelve months lead-time for thirty rainfall stations of Bangladesh. The best SARIMA model was chosen based on the RMSE and normalized BIC criteria. A validation check for each station was performed on residual series. Residuals were found white noise at almost all stations. Besides, lack of fit test and normalized BIC confirms all the models were fitted satisfactorily. The predicted results from the selected models were compared with the observed data to determine prediction precision. We found that selected models predicted monthly rainfall with a reasonable accuracy. Therefore, year-long rainfall can be forecasted using these models.

Weekly Maximum Electric Load Forecasting for 104 Weeks by Seasonal ARIMA Model (계절 ARIMA 모형을 이용한 104주 주간 최대 전력수요예측)

  • Kim, Si-Yeon;Jung, Hyun-Woo;Park, Jeong-Do;Baek, Seung-Mook;Kim, Woo-Seon;Chon, Kyung-Hee;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • Accurate midterm load forecasting is essential to preventive maintenance programs and reliable demand supply programs. This paper describes a midterm load forecasting method using autoregressive integrated moving average (ARIMA) model which has been widely used in time series forecasting due to its accuracy and predictability. The various ARIMA models are examined in order to find the optimal model having minimum error of the midterm load forecasting. The proposed method is applied to forecast 104-week load pattern using the historical data in Korea. The effectiveness of the proposed method is evaluated by forecasting 104-week load from 2011 to 2012 by using historical data from 2002 to 2010.

A Research of Prediction of Photovoltaic Power using SARIMA Model (SARIMA 모델을 이용한 태양광 발전량 예측연구)

  • Jeong, Ha-Young;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Hyung-Wook;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.82-91
    • /
    • 2022
  • In this paper, time series prediction method of photovoltaic power is introduced using seasonal autoregressive integrated moving average (SARIMA). In order to obtain the best fitting model by a time series method in the absence of an environmental sensor, this research was used data below 50% of cloud cover. Three samples were extracted by time intervals from the raw data. After that, the best fitting models were derived from mean absolute percentage error (MAPE) with the minimum akaike information criterion (AIC) or beysian information criterion (BIC). They are SARIMA (1,0,0)(0,2,2)14, SARIMA (1,0,0)(0,2,2)28, SARIMA (2,0,3)(1,2,2)55. Generally parameter of model derived from BIC was lower than AIC. SARIMA (2,0,3)(1,2,2)55, unlike other models, was drawn by AIC. And the performance of models obtained by SARIMA was compared. MAPE value was affected by the seasonal period of the sample. It is estimated that long seasonal period samples include atmosphere irregularity. Consequently using 1 hour or 30 minutes interval sample is able to be helpful for prediction accuracy improvement.

ARMA-based data prediction method and its application to teleoperation systems (ARMA기반의 데이터 예측기법 및 원격조작시스템에서의 응용)

  • Kim, Heon-Hui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.56-61
    • /
    • 2017
  • This paper presents a data prediction method and its application to haptic-based teleoperation systems. In general, time delays inevitably occur during data transmission in a network environment, which degrades the overall performance of haptic-based teleoperation systems. To address this situation, this paper proposes an autoregressive moving average (ARMA) model-based data prediction algorithm for estimating model parameters and predicting future data recursively in real time. The proposed method was applied to haptic data captured every 5 ms while bilateral haptic interaction was carried out by two users with an object in a virtual space. The results showed that the prediction performance of the proposed method had an error of less than 1 ms when predicting position-level data 100 ms ahead.

Development of System Marginal Price Forecasting Method Using ARIMA Model (ARIMA 모형을 이용한 계통한계가격 예측방법론 개발)

  • Kim Dae-Yong;Lee Chan-Joo;Jeong Yun-Won;Park Jong-Bae;Shin Joong-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.2
    • /
    • pp.85-93
    • /
    • 2006
  • Since the SMP(System Marginal Price) is a vital factor to the market participants who intend to maximize the their profit and to the ISO(Independent System Operator) who wish to operate the electricity market in a stable sense, the short-term marginal price forecasting should be performed correctly. In an electricity market the short-term market price affects considerably the short-term trading between the market entities. Therefore, the exact forecasting of SMP can influence on the profit of market participants. This paper presents a new methodology for a day-ahead SMP forecasting using ARIMA(Autoregressive Integrated Moving Average) model based on the time-series method. And also the correction algorithm is proposed to minimize the forecasting error in order to improve the efficiency and accuracy of the SMP forecasting. To show the efficiency and effectiveness of the proposed method, the case studies are performed using historical data of SMP in 2004 published by KPX(Korea Power Exchange).