• Title/Summary/Keyword: Autophagy-related protein 5

Search Result 43, Processing Time 0.016 seconds

Cellular-protective effects of Nardotidis seu Sulculii Concha Extract against oxidative stress (산화적 스트레스에 대한 석결명의 세포 보호 효과)

  • Kim, Kwang Yeon;Lee, Seung Jin;Jee, Seon Young;Bae, Su Jin;Song, Yu Rim;Yun, Un-Jung;Bak, Seonbeen;Song, Jong Kuk;Son, Tae Jin;Son, Jae-Dong;Kim, Woo Hyun;Yang, Ju Hye;Park, Sun Dong;Kim, Sang Chan;Kim, Young Woo;Park, Kwang-Il
    • Herbal Formula Science
    • /
    • v.29 no.2
    • /
    • pp.71-80
    • /
    • 2021
  • Objectives : This study investigated cellular-protective effects of Nardotidis seu Sulculii Concha water extract (NSCE) against oxidative stress induced by arachidonic acid (AA)+iron or tert-butylhydroperoxide (tBHP). Methods : In vitro, MTT assay was assessed for cell viability, and immunoblotting analysis was performed to detect expression of AMP-activated kinase (AMPK) signaling pathway and autophagy related proteins. In vivo, mice were orally administrated with the aqueous extract of NSCE of 500 mg/kg for 3 days, and then injected with CCl4 0.5 mg/kg body weight to induce acute damage. The level of liver damage was measured by serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) analysis. Results : Treatment with NSCE inhibited cell death induced by AA+iron and tBHP. NSCE induced the phosphorylation of AMPK, and this compound also induced the phosphorylation of LKB1, an upstream kinase of AMPK, and Acetyl-CoA carboxylase (ACC), a primary downstream target of AMPK. NSCE increased the protein levels of autophagic markers (LC3II and beclin-1) and decreased the phosphorylation of mammalian target of rapamycin (mTOR) and simultaneously increased the phosphorylation of unc-51-like kinase-1 (ULK-1) in time-dependent manner. Conclusions : NSCE has the ability 1) to protect cells against oxidative stress induced by AA+iron or tBHP. NSCE 2) to activate AMP-activated protein kinase (AMPK), and 3) to regulate autophagy, an important regulator in cell survival.

Enhancing the Anti-cancer Activity of Non-steroidal Anti-inflammatory Drug and Down-regulation of Cancer Stemness-related Markers in Human Cancer Cells by DAPT and MHY2245 (DAPT 및 MHY2245의 비스테로이드소염제(NSAID)의 항암 활성 증강 및 종양줄기세포관련 표지자 발현 감소 활성에 대한 분자적 기전)

  • Moon, Hyun-Jung;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.210-221
    • /
    • 2022
  • This study investigated the mechanisms underlying the anti-cancer effects of non-steroidal anti-inflammatory drugs (NSAIDs) in human cancer cells in combination with either N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, or MHY2245, a new synthetic sirtuin 1 inhibitor. The results showed both DAPT and MHY2245 as novel chemosensitizers of human colon cancer KM12 and human hepatocellular carcinoma SNU475 cells to NSAIDs involving celecoxib and 2, 5-dimethyl celecoxib. The NSAID-induced cytotoxicity of these cells was significantly increased by DAPT and MHY2245 in a cyclooxygenase-2 independent manner. In addition, DAPT and MHY2245 reduced levels of p62, Notch1 intracellular domain, and multiple cancer stemness (CS)-related markers including Notch1, CD44, CD133, octamer-binding transcription factor 4, mutated p53 and c-Myc. However, the level of activating transcription factor 4 (ATF4) was enhanced, probably indicating the down-regulation of multiple CS-related markers by DAPT or MHY2245-mediated autophagy induction. Moreover, the NSAID-mediated reduction of p62/nuclear factor erythroid-derived 2-like 2 and CS-related marker proteins and the up-regulation of C/EBP homologous protein (CHOP)/ATF4 were accelerated by DAPT and MHY2245. As such, the combination of NSAID and either DAPT or MHY2245 resulted in higher cytotoxicity than NSAID alone by accelerating the down-regulation of multiple CS-related markers and PARP activation, indicating that both inhibitors promote NSAID-mediated autophagic cell death, possibly through the CHOP/ATF4 pathway. In conclusion, either combination strategy may be useful for the effective treatment of human cancer cells expressing CS-related markers.

The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis

  • Jiangxin Xu;Xiangliang Huang;Yourong Zhou;Zhifei Xu;Xinjun Cai;Bo Yang;Qiaojun He;Peihua Luo;Hao Yan;Jie Jin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.647-657
    • /
    • 2024
  • Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it needs analgesics during oncology treatment, particularly in the context of the coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.