• 제목/요약/키워드: Autonomous vehicles

검색결과 811건 처리시간 0.021초

Intelligent 3D Obstacles Recognition Technique Based on Support Vector Machines for Autonomous Underwater Vehicles

  • Mi, Zhen-Shu;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.213-218
    • /
    • 2009
  • This paper describes a classical algorithm carrying out dynamic 3D obstacle recognition for autonomous underwater vehicles (AUVs), Support Vector Machines (SVMs). SVM is an efficient algorithm that was developed for recognizing 3D object in recent years. A recognition system is designed using Support Vector Machines for applying the capabilities on appearance-based 3D obstacle recognition. All of the test data are taken from OpenGL Simulation. The OpenGL which draws dynamic obstacles environment is used to carry out the experiment for the situation of three-dimension. In order to verify the performance of proposed SVMs, it compares with Back-Propagation algorithm through OpenGL simulation in view of the obstacle recognition accuracy and the time efficiency.

신경회로망을 이용한 AUV의 시스템 동정화 및 응용 (System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network)

  • 이판묵;이종식
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

Autonomous Underwater Vehicles with Modeling and Analysis of 7-Phase BLDC Motor Drives

  • Song, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.932-941
    • /
    • 2014
  • In this paper, a simulation model for 7-phase BLDC motor drives for an Autonomous Underwater Vehicles (AUV) is proposed. A 7-phase BLDC motor is designed and the electrical characteristics are analyzed using FEA program and the power electronics drives for the 7-phase BLDC motor are theoretically analyzed and the actual implementation has been accomplished using Matlab Simulink. PI controller and fuzzy controller are compared for verifying the validity of the proposed model and the informative results are described in detail. Especially A fuzzy controller is used to characterize 7-phase BLDC motor, drive systems under normal and fault operating conditions.

모바일 자유공간 광전송(FSO) 기술 동향 (Recent R&D Trends of Mobile FSO Technologies)

  • 여찬일;허영순;류지형;이문섭;강현서;박시웅;김계은;김성창
    • 전자통신동향분석
    • /
    • 제33권6호
    • /
    • pp.118-128
    • /
    • 2018
  • With the massive increase in bandwidth for wireless communications, free space optical (FSO) communication has attracted significant interest owing to its outstanding strengths over conventional radio frequency wireless communication such as a wide bandwidth, unlicensed spectrum, low power consumption, small size, electromagnetic interference immunity, long-range propagation, and improved security. In recent years, FSO technology has been studied intensively for use in terrestrial and underwater autonomous and unmanned mobile systems, a rapidly growing application area, including robots, drones, unmanned aerial vehicles, autonomous vehicles, unmanned trains, and unmanned submarines. In this report, we review the recent trends and key technologies for the mobile FSO system, and introduce our drone-based mobile FSO system, which is currently under development.

무인 비행체의 환경 인지 및 경로 계획 연구동향 (Research Trends on Environmental Perception and Motion Planning for Unmanned Aerial Vehicles)

  • 홍유경;김유경;김수성;이희수;차지훈
    • 전자통신동향분석
    • /
    • 제34권3호
    • /
    • pp.43-54
    • /
    • 2019
  • Currently, the use of unmanned aerial vehicles (UAVs) is spreading from recreational purposes to the public- and commercial-use product areas. Various efforts are being made worldwide to ensure the safety of UAVs and expand their service applications and convenience, because autonomous flights are becoming increasingly popular. In order for a UAV to perform autonomous flight and mission without operator assistance, environmental perception technology, path planning technology, and flight control technology are needed. In this article, we present recent trends in these technologies.

자율주행 자동차 정지 거동에서의 인지 불확실성을 고려한 확률적 모델 예측 제어 (Stochastic Model Predictive Control for Stop Maneuver of Autonomous Vehicles under Perception Uncertainty)

  • 김상윤;조아라;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.35-42
    • /
    • 2022
  • This paper presents a stochastic model predictive control (SMPC) for stop maneuver of autonomous vehicles considering perception uncertainty of stopped vehicle. The vehicle longitudinal motion should achieve both driving comfortability and safety. The comfortable stop maneuver can be performed by mimicking acceleration profile of human driving pattern. In order to implement human-like stop motion, we propose a reference safe inter-distance and velocity model for the longitudinal control system. The SMPC is used to track the reference model which contains the position uncertainty of preceding vehicle as a chance constraint. We conduct simulation studies of deceleration scenarios against stopped vehicle in urban environment. The test results show that proposed SMPC can execute comfortable stop maneuver and guarantee safety simultaneously.

Framework for Multimedia Service using Multicast in CVCN Network

  • Woo, Yoseop;Kim, Iksoo
    • 한국정보기술학회 영문논문지
    • /
    • 제9권2호
    • /
    • pp.55-63
    • /
    • 2019
  • Vehicle communication networks have some deficient network resources to support a vast multimedia service including safety driving information, video, news and some broadcast relayed from the playgrounds such as professional baseball games for autonomous vehicles. This paper deals with the framework for providing seamless multimedia service including safety driving information using multicast in cooperated-connected vehicle communication network (CVCN). It adopts smart-switch (SS) and smart intelligent multicast agent(SIMA) to support the seamless multimedia service. The SS manages and switches multimedia streams through SIMA in CVCN network. The SIMA to operate as an access point, is composed of multicast supporting part and control part of mobile devices/autonomous vehicles in CVCN network. Therefore this proposed technique using SS and SIMA within CVCN network is a new framework for multimedia service that can disperse the load of server.

주행안전성 평가 시나리오 구축을 위한 주행행태 매개변수 추출에 관한 연구 (A Study on The Extraction of Driving Behavior Parameters for the Construction of Driving Safety Assessment Scenario)

  • 고민지;이지연;손승녀
    • 대한임베디드공학회논문지
    • /
    • 제19권2호
    • /
    • pp.101-106
    • /
    • 2024
  • For the commercialization of automated vehicles, it is necessary to create various scenarios that can evaluate driving safety and establish a data system that can verify them. Depending on the vehicle's ODD (Operational Design Domain), there are numerous scenarios with various parameters indicating vehicle driving conditions, but no systematic methodology has been proposed to create and combine scenarios to test them. Therefore, projects are actively underway abroad to establish a scenario library for real-world testing or simulation of autonomous vehicles. However, since it is difficult to obtain data, research is being conducted based on simulations that simulate real road. Therefore, in this study, parameters calculated through individual vehicle trajectory data extracted based on roadside CCTV image-based driving environment DB was proposed through the extracted data. This study can be used as basic data for safety standards for scenarios representing various driving behaviors.

Self-Driving and Safety Security Response : Convergence Strategies in the Semiconductor and Electronic Vehicle Industries

  • Dae-Sung Seo
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.25-34
    • /
    • 2024
  • The paper investigates how the semiconductor and electric vehicle industries are addressing safety and security concerns in the era of autonomous driving, emphasizing the prioritization of safety over security for market competitiveness. Collaboration between these sectors is deemed essential for maintaining competitiveness and value. The research suggests solutions such as advanced autonomous driving technologies and enhanced battery safety measures, with the integration of AI chips playing a pivotal role. However, challenges persist, including the limitations of big data and potential errors in semiconductor-related issues. Legacy automotive manufacturers are transitioning towards software-driven cars, leveraging artificial intelligence to mitigate risks associated with safety and security. Conflicting safety expectations and security concerns can lead to accidents, underscoring the continuous need for safety improvements. We analyzed the expansion of electric vehicles as a means to enhance safety within a framework of converging security concerns, with AI chips being instrumental in this process. Ultimately, the paper advocates for informed safety and security decisions to drive technological advancements in electric vehicles, ensuring significant strides in safety innovation.

무인비행체 경로계획 기술 동향 (Survey on Developing Path Planning for Unmanned Aerial Vehicles)

  • 권용선;차지훈
    • 전자통신동향분석
    • /
    • 제39권4호
    • /
    • pp.10-20
    • /
    • 2024
  • Recent advancements in autonomous flight technologies for Unmanned Aerial Vehicles (UAVs) have greatly expanded their applicability for various tasks, including delivery, agriculture, and rescue. This article presents a comprehensive survey of path planning techniques in autonomous navigation and exploration that are tailored for UAVs. The robotics literature has studied path and motion planning, from basic obstacle avoidance to sophisticated algorithms capable of dynamic decision-making in challenging environments. In this article, we introduce popular path and motion planning approaches such as grid-based, sampling-based, and optimization-based planners. We further describe the contributions from the state-of-the-art in exploration planning for UAVs, which have been derived from these well-studied planners. Recent research, including the method we are developing, has improved performance in terms of efficiency and scalability for exploration tasks in challenging environments without human intervention. On the basis of these research and development trends, this article discusses future directions in UAV path planning technologies, illustrating the potential for UAVs to perform complex tasks with increased autonomy and efficiency.