DOI QR코드

DOI QR Code

Recent R&D Trends of Mobile FSO Technologies

모바일 자유공간 광전송(FSO) 기술 동향

  • Published : 2018.12.01

Abstract

With the massive increase in bandwidth for wireless communications, free space optical (FSO) communication has attracted significant interest owing to its outstanding strengths over conventional radio frequency wireless communication such as a wide bandwidth, unlicensed spectrum, low power consumption, small size, electromagnetic interference immunity, long-range propagation, and improved security. In recent years, FSO technology has been studied intensively for use in terrestrial and underwater autonomous and unmanned mobile systems, a rapidly growing application area, including robots, drones, unmanned aerial vehicles, autonomous vehicles, unmanned trains, and unmanned submarines. In this report, we review the recent trends and key technologies for the mobile FSO system, and introduce our drone-based mobile FSO system, which is currently under development.

Keywords

HJTOCM_2018_v33n6_118_f0001.png 이미지

(그림 1) OWC 기술 분류

HJTOCM_2018_v33n6_118_f0002.png 이미지

(그림 2) 모바일 FSO 구성요소

HJTOCM_2018_v33n6_118_f0003.png 이미지

(그림 3) 짐벌 기반 PAT 기술 개략도

HJTOCM_2018_v33n6_118_f0004.png 이미지

(그림 4) Gigabit 이더넷 FSO FPGA 설계 예시

HJTOCM_2018_v33n6_118_f0005.png 이미지

(그림 5) ETRI 모바일 FSO 시제품

<표 1> FSO 시스템 링크 및 네트워크 주요 이슈

HJTOCM_2018_v33n6_118_t0001.png 이미지

<표 2> 코딩 방식에 따른 BER

HJTOCM_2018_v33n6_118_t0002.png 이미지

References

  1. Statista, "2018, Global Mobile Data Traffic from 2016 to 2021," 2018. https://www.statista.com/statistics/271405/global-mobile-data-traffic-forecast/
  2. M.Z. Chowdhury et al., "A Comparative Survey of Optical Wireless Technologies: Architectures and Applications," IEEE Access, vol. 6, 2018, pp. 9819-9840. https://doi.org/10.1109/ACCESS.2018.2792419
  3. V.W.S. Chan, "Free-Space Optical Communications" IEEE J. Lightw. Technol., vol. 24, no. 12, 2006, pp. 4750-4762. https://doi.org/10.1109/JLT.2006.885252
  4. S.G. Gaurav, "Free-Space Optical Communications Technology: Global Markets," BCC Research, Mar. 2015, p. 8.
  5. H. Kaushal et al., "Optical Communication in Space: Challenges and Mitigation Techniques," IEEE Commun. Surv. Tutor., vol. 19, 2017, pp. 57-96. https://doi.org/10.1109/COMST.2016.2603518
  6. Shaina et al., "Comparative Analysis of Free Space Optical Communication System for Various Optical Transmission Windows under Adverse Weather Conditions," Procedia Comput. Sci., vol. 89, 2016, pp. 99-106. https://doi.org/10.1016/j.procs.2016.06.014
  7. https://www.google.com/intl/es419/loon/
  8. B. Moision et al., "Demonstration of Free-Space Optical Communication for Long-Range Data Links Between Balloons on Project Loon," SPIE LASE, San Francisco, CA, USA, 2017, pp. 1-14.
  9. M. Juckerberg, "The Technology behind Auila," FaceBook, July 21, 2016. https://www.facebook.com/notes/mark-zuckerberg/the-technology-behind-aquila/10153916136506634
  10. Hyperion Project, http://projecthyperion.co.uk/
  11. C. Quintana et al., "Design of a Holographic Tracking Module for Long-Range Retroreflector Free-Space Systems," Appl. Optics, vol. 55, no. 25, 2016, pp. 7173-7178. https://doi.org/10.1364/AO.55.007173
  12. A.C. Casado et al., "In-Axis Reception by Polarization Discrimination in a Modulating-Retroreflector-Based Free-Space Optical Communication Link," Microw. Opt. Technol. Lett., vol. 54, no. 11, 2012, pp. 2520-2522. https://doi.org/10.1002/mop.27116
  13. F. Moll et al., "Demonstration of High-Rate Laser Communications from Fast Airborne Platform: Flight Campaign and Results," SPIE Security + Defence, Amsterdam, Netherlands, 2014, pp. 1-6.
  14. DLR, "Projekte - Abgeschlossen 2011 - 2017," https:// www.dlr.de/kn/en/desktopdefault.aspx/tabid-4309/3222_read-38945/
  15. A.C. Casado et al., "Low-Impact Air-to-Ground Free-Space Optical Communication System Design and First Results" IEEE ICSOS Conf., Santa Monica, CA, USA, May 11-13, 2011, pp. 109-112.
  16. H. Kaushal el al., "Free Space Optical Communication" Springer, New Delhi, India, 2017.
  17. H. Willebrand et al., "Free Space Optics: Enabling Optical Connectivity in Today's Networks," Sams, Indianapolis, USA, 2002.
  18. X. Wang et al., "Liquid Crystal on Silicon (LCOS) Wavefront Corrector and Beam Steerer," Opt. Sci. Technol., San Diego, USA, 2003, pp. 139-146.
  19. E. Lee et al., "Performance Analysis of the Asymmetric Dual-Hop Relay Transmission with Mixed RF/FSO Links," IEEE Photon. Technol. Lett., vol. 23, no. 21, 2011, pp. 1642-1644. https://doi.org/10.1109/LPT.2011.2166063
  20. I.K. Son et al., "A Survey of Free Space Optical Networks," Digit. Commun. Netw., vol. 3, 2017, pp. 67-77. https://doi.org/10.1016/j.dcan.2016.11.002
  21. Z. Ghassemlooy et al., Optical Wireless Communications System and Channel Modelling with MATLAB[B], CRC Press: Boca Raton, FL, USA, 2012, pp. 167-195.
  22. T.Y. Elganimi, "Performance Comparison between OOK, PPM and PAM Modulation Schemes for Free Space Optical (FSO) Communication Systems: Analytical Study," Int. J. Comput. Appl., vol. 79, no. 11, 2013, pp. 22-27. https://doi.org/10.5120/13786-1838
  23. J. Poliak et. al., "FPGA-based Media Converter for FSO Links," IWOW, Newcastle upon Tyne, United Kingdom, 2013, pp. 157-161.
  24. V.W.S. Chan, "Optical Space Communications and Networks," SPIE Optics + Photon., San Diego, CA, UAS, 2006, pp. 1-16.
  25. ITU-R P.1817-1, Propagation Data Required for the Design of Terrestrial Free-Space Optical Links, https://www.itu.int/rec/R-REC-P.1817-0-200708-S/en