• 제목/요약/키워드: Autonomous steering

검색결과 184건 처리시간 0.017초

후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소 (Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor)

  • 김태현;황대규;김봉상;이성희;문희창
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

탑승식 바닥 청소 로봇의 주행 자동화 시스템 개발 (Development of Automated Driving System of Manual Driving based Cleaning Robot)

  • 구재완;양견모;곽정훈;서갑호
    • 로봇학회논문지
    • /
    • 제19권3호
    • /
    • pp.311-317
    • /
    • 2024
  • Large-scale three-wheeled cleaning robots are utilized to clean large spaces such as warehouses and manufacturing plants where significant floor contamination occurs. Although there are autonomous cleaning robots, user-operated cleaning robots are often preferred because they are easy to repair and inexpensive. Therefore, workers have to spend extra time on cleaning, which reduces work efficiency. In this paper, we propose an autonomous driving system designed to automate the operation while maintaining the structure of existing cleaning robots. The contributions of this paper are as follows: 1) Hardware modules that control the driving and steering components. 2) A LiDAR-based autonomous driving system and path point generation system considering the mechanical characteristics of the cleaning robot. 3) The proposed system is implemented on an actual cleaning robot and driving tests are performed. As a result, when path planning is performed to cover the cleaning area, the average RMSE for each straight path is 0.0802 m, which is smaller than the minimum cleaning overlap of 0.3 m that occurs during the straight cleaning of the robot. This shows that the proposed system effectively covers the entire cleaning area.

An Optimal Driving Support Strategy(ODSS) for Autonomous Vehicles based on an Genetic Algorithm

  • Son, SuRak;Jeong, YiNa;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5842-5861
    • /
    • 2019
  • A current autonomous vehicle determines its driving strategy by considering only external factors (Pedestrians, road conditions, etc.) without considering the interior condition of the vehicle. To solve the problem, this paper proposes "An Optimal Driving Support Strategy(ODSS) based on an Genetic Algorithm for Autonomous Vehicles" which determines the optimal strategy of an autonomous vehicle by analyzing not only the external factors, but also the internal factors of the vehicle(consumable conditions, RPM levels etc.). The proposed ODSS consists of 4 modules. The first module is a Data Communication Module (DCM) which converts CAN, FlexRay, and HSCAN messages of vehicles into WAVE messages and sends the converted messages to the Cloud and receives the analyzed result from the Cloud using V2X. The second module is a Data Management Module (DMM) that classifies the converted WAVE messages and stores the classified messages in a road state table, a sensor message table, and a vehicle state table. The third module is a Data Analysis Module (DAM) which learns a genetic algorithm using sensor data from vehicles stored in the cloud and determines the optimal driving strategy of an autonomous vehicle. The fourth module is a Data Visualization Module (DVM) which displays the optimal driving strategy and the current driving conditions on a vehicle monitor. This paper compared the DCM with existing vehicle gateways and the DAM with the MLP and RF neural network models to validate the ODSS. In the experiment, the DCM improved a loss rate approximately by 5%, compared with existing vehicle gateways. In addition, because the DAM improved computation time by 40% and 20% separately, compared with the MLP and RF, it determined RPM, speed, steering angle and lane changes faster than them.

실내 복도환경에서의 컨벌루션 신경망을 이용한 드론의 자율주행 연구 (Autonomous Drone Navigation in the hallway using Convolution Neural Network)

  • 조정원;이민혜;남광우;이창우
    • 한국정보통신학회논문지
    • /
    • 제23권8호
    • /
    • pp.936-942
    • /
    • 2019
  • 실내 자율 주행은 실외 환경에서의 자율 주행과는 다른 환경적인 요소가 주어진다. 폐쇄된 환경에서 좁은 길을 따라 주행해야 하며, 불규칙한 조명, 계단과 같은 지형의 특성, 바닥에 산재한 장애물 등 실외 환경과 다른 요소를 극복해야 한다. 또한 실내 복도에서의 주행은 텍스처가 유사하거나 다양성이 적은 환경의 경우 복잡한 환경에 비해 인식에 어려움이 있다. 본 논문에서는 다양성이 적은 실내 복도환경에서의 컨벌루션 신경망(CNN)을 이용한 자율 주행 드론을 연구한다. 설계한 신경망은 드론의 전면 카메라로부터 이미지를 받아온 후, 그 이미지를 바탕으로 다음 경로를 예측하여 드론을 조향한다. 총 38번의 주행 테스트 결과, 복도 주변의 벽이나 문에 부딪히지 않고 직선 구간을 완주하여 다양성이 적은 실내 환경에서의 주행 성능을 확인할 수 있었다.

Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계 (The linear model analysis and Fuzzy controller design of the ship using the Nomoto model)

  • 임대영;김영철;정길도
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.821-828
    • /
    • 2011
  • 본 논문은 자동항로 추적(Track keeping control), 자동조타(Automatic steering), 자동 접이안(Automatic mooring control) 등으로 구성된 자동운항 시스템 중 자동조타장치의 성능 개선 알고리즘 개발에 대해 다루고 있다. 자동조타는 풍력 또는 조력 등의 영향으로부터 선박의 설정 항로와 실제 침로와의 차이를 계산하여 설정된 항로를 유지하며 항해하므로, 조타에 소요되는 선원의 지속적인 항해로 인한 운전 부담을 경감시키고 불필요한 타조작에 의한 항로 이탈을 줄임으로써 항해거리 단축과 연료비용을 절약할 수 있는 시스템이다. 선박의 모델링을 위하여 Nomoto 모델에 근거하여 전달함수를 구하고, 조종성능(Manoeuvirng) 편리성을 고려하여 타각 입력에 대한 선수각 응답으로 표시된 선박의 4자유도만을 고려한 선형 모델을 제안하고 선박 자동조타장치의 최대각과 타각율을 고려하여 Fuzzy제어기를 설계 하였고 PID제어기로 성능을 비교 분석하였다.

적외선센서와 카메라를 이용한 자율주행로봇의 장애물회피 알고리즘 연구 (Study on Obstacle Avoidance Algorithm of Autonomous Mobile Robots Using Infrared Sensor and Camera)

  • 손정우;윤호성;임완수
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.192-198
    • /
    • 2023
  • 본 논문은 자율주행 로봇이 효과적으로 장애물을 회피하기 위한 알고리즘을 제안하였다. 장애물을 인식하기 위해 적외선센서와 카메라를 활용하였다. 적외선센서는 장애물까지의 거리를 측정하고, 카메라로 촬영한 영상을 통해 장애물의 폭을 파악하였다. 장애물 폭을 계산하기 위해 이진화 처리, 윤곽선 검출 및 최소면적 직사각형 기법을 사용하였다. 장애물까지 거리와 장애물 폭을 이용하여 회피 각도를 계산하고, 이 회피 각도는 조향 제어에 적용하였다. 제안한 장애물 회피 알고리즘을 자율주행 로봇에 탑재하여 실험을 수행하였고, 적외선센서만을 사용한 경우에 비해 장애물 폭이 30cm일 때 회피 시간을 최대 8.5초 단축하였다.

농업기계 내비게이션을 위한 INS/GPS 통합 연구 (Study on INS/GPS Sensor Fusion for Agricultural Vehicle Navigation System)

  • 노광모;박준걸;장영창
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.423-429
    • /
    • 2008
  • This study was performed to investigate the effects of inertial navigation system (INS) / global positioning system (GPS) sensor fusion for agricultural vehicle navigation. An extended Kalman filter algorithm was adopted for INS/GPS sensor fusion in an integrated mode, and the vehicle dynamic model was used instead of the navigation state error model. The INS/GPS system was consisted of a low-cost gyroscope, an odometer and a GPS receiver, and its performance was tested through computer simulations. When measurement noises of GPS receiver were 10, 1.0, 0.5, and 0.2 m ($1{\sigma}$), RMS position and heading errors of INS/GPS system at 5 m/s straight path were remarkably reduced with 10%, 35%, 40%, and 60% of those obtained from the GPS receiver, respectively. The decrease of position and heading errors by using INS/GPS rather than stand-alone GPS can provide more stable steering of agricultural equipments. Therefore, the low-cost INS/GPS system using the extended Kalman filter algorithm may enable the self-autonomous navigation to meet required performance like stable steering or more less position errors even in slow-speed operation.

ELA: 가변 형상 구조로봇의 자율주행을 위한 실시간 장애물 회피 기법 (ELA: Real-time Obstacle Avoidance for Autonomous Navigation of Variable Configuration Rescue Robots)

  • 정해관;현경학;김수현;곽윤근
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.186-193
    • /
    • 2008
  • We propose a novel real-time obstacle avoidance method for rescue robots. This method, named the ELA(Emergency Level Around), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward safe position. In the ELA, we consider two sensor modules, PSD(Position Sensitive Detector) infrared sensors taking charge of obstacle detection in short distance and LMS(Laser Measurement System) in long distance respectively. Hence if a robot recognizes an obstacle ahead by PSD infrared sensors first, and judges impossibility to overcome the obstacle based on driving mode decision process, the order of priority is transferred to LMS which collects data of radial distance centered on the robot to avoid the confronted obstacle. After gathering radial information, the ELA algorithm estimates emergency level around a robot and generates a polar histogram based on the emergency level to judge where the optimal free space is. Finally, steering angle is determined to guarantee rotation to randomly direction as well as robot width for safe avoidance. Simulation results from wandering in closed local area which includes various obstacles and different conditions demonstrate the power of the ELA.

  • PDF

무인잠수정의 적분 상태 궤환 제어기 설계 및 경유점 추적 연구 (A Study on an Integral State Feedback Controller for Way-point Tracking of an AUV)

  • 배설봉;신동협;박상홍;주문갑
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.661-666
    • /
    • 2013
  • A state feedback controller with integration of output error is proposed for way-point tracking of an AUV (Autonomous Underwater Vehicle). For the steering control on the XY plane, the proposed controller uses three state variables (sway velocity, yaw rate, heading angle) and the integral of the steering error, and for the depth control on the XZ plane, it uses four state variables (pitch rate, depth, pitch angle) and the integral of the depth error. From the simulation using Matlab/Simulink, we verify that the performance of the proposed controller is satisfactory within an error range of 1m from the target way-point for arbitrarily chosen sets of consecutive way-points.

Design of an RCGA-based Linear Active Disturbance Rejection Controller for Ship Heading Control

  • Ahn, Jong-Kap;So, Myung-Ok
    • 한국항해항만학회지
    • /
    • 제44권5호
    • /
    • pp.423-429
    • /
    • 2020
  • A ship's automatic steering system is the basis for addressing control difficulties related to course-changing and course-keeping during navigation through heading angle control, and is a link in realizing unmanned and autonomous ships. This study proposes a robust RCGA-based linear active disturbance rejection controller (LADRC) design method considering environmental disturbances, measurement noise, and model uncertainties in designing a ship heading controller for use when the ship is sailing. The LADRC consisted of a transient profile, a linear extended state observer, and a PD controller. The control gains in the LADRC with the linear extended state observer were adjusted by RCGAs to minimize the integral of the time-weighted absolute error (ITAE), which is an evaluation function of the control system. The proposed method was applied to ship heading control, and its effectiveness was validated by comparing the propulsive energy loss between the proposed method and a conventional linear PD controller. The simulation results showed that the proposed method had the advantages of lower propulsive energy loss, more robustness, and higher tracking precision than the conventional linear PD controller.