• 제목/요약/키워드: Autonomous intelligent

검색결과 702건 처리시간 0.028초

제조+AI로 실현되는 미래상: 자율공장 (Autonomous Factory: Future Shape Realized by Manufacturing + AI)

  • 손지연;김현;이은서;박준희
    • 전자통신동향분석
    • /
    • 제36권1호
    • /
    • pp.64-70
    • /
    • 2021
  • The future society will be changed through an artificial intelligence (AI) based intelligent revolution. To prepare for the future and strengthen industrial competitiveness, countries around the world are implementing various policies and strategies to utilize AI in the manufacturing industry, which is the basis of the national economy. Manufacturing AI technology should ensure accuracy and reliability in industry and should be explainable, unlike general-purpose AI that targets human intelligence. This paper presents the future shape of the "autonomous factory" through the convergence of manufacturing and AI. In addition, it examines technological issues and research status to realize the autonomous factory during the stages of recognition, planning, execution, and control of manufacturing work.

협조행동을 위한 자율이동로봇의 강화학습에서의 먹이와 포식자 문제 (Prey-predator Problem in the Reinforcement Learning of Autonomous Mobile Robots for Cooperative Behavior)

  • 김서광;김민수;윤용석;공성곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.809-811
    • /
    • 2000
  • 협조행동이 요구되는 다수의 자율이동로봇 시스템에서 각 개체는 주변환경의 인식뿐만 아니라 지속적인 환경변화에 적응할 수 있는 고도의 추론능력을 요구하고 있다. 이에 본 논문에서는 강화학습을 이용하여 동적으로 변화하는 환경에서 스스로 학습하여 대처할 수 있는 협조행동 방법을 제시하였다. 강화학습은 동물의 학습방법 연구에서 비롯되었으며, 주어진 목표를 수행하는 과정에서 개체의 행동이 목표를 성취하도록 하였을 때는 그 행동에 보상을 주어 환경의 상태에 따른 최적의 행동방법을 찾아내도록 학습하는 방법이다. 따라서 본 논문에서는 포식자들이 협조행동을 통하여 능동적으로 움직이는 먹이를 잡는 까다로운 문제에 제안한 방법을 적용하여 그 성능을 검증하였다.

  • PDF

지능형 로봇 구동을 위한 제스처 인식 기술 동향 (Survey: Gesture Recognition Techniques for Intelligent Robot)

  • 오재용;이칠우
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.771-778
    • /
    • 2004
  • Recently, various applications of robot system become more popular in accordance with rapid development of computer hardware/software, artificial intelligence, and automatic control technology. Formerly robots mainly have been used in industrial field, however, nowadays it is said that the robot will do an important role in the home service application. To make the robot more useful, we require further researches on implementation of natural communication method between the human and the robot system, and autonomous behavior generation. The gesture recognition technique is one of the most convenient methods for natural human-robot interaction, so it is to be solved for implementation of intelligent robot system. In this paper, we describe the state-of-the-art of advanced gesture recognition technologies for intelligent robots according to three methods; sensor based method, feature based method, appearance based method, and 3D model based method. And we also discuss some problems and real applications in the research field.

Hardware Implementation for Real-Time Speech Processing with Multiple Microphones

  • Seok, Cheong-Gyu;Choi, Jong-Suk;Kim, Mun-Sang;Park, Gwi-Tea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.215-220
    • /
    • 2005
  • Nowadays, various speech processing systems are being introduced in the fields of robotics. However, real-time processing and high performances are required to properly implement speech processing system for the autonomous robots. Achieving these goals requires advanced hardware techniques including intelligent software algorithms. For example, we need nonlinear amplifier boards which are able to adjust the compression radio (CR) via computer programming. And the necessity for noise reduction, double-buffering on EPLD (Erasable programmable logic device), simultaneous multi-channel AD conversion, distant sound localization will be explained in this paper. These ideas can be used to improve distant and omni-directional speech recognition. This speech processing system, based on embedded Linux system, is supposed to be mounted on the new home service robot, which is being developed at KIST (Korea Institute of Science and Technology)

  • PDF

GENIE : 신경망 적응과 유전자 탐색 기반의 학습형 지능 시스템 엔진 (GENIE : A learning intelligent system engine based on neural adaptation and genetic search)

  • 장병탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.27-34
    • /
    • 1996
  • GENIE is a learning-based engine for building intelligent systems. Learning in GENIE proceeds by incrementally modeling its human or technical environment using a neural network and a genetic algorithm. The neural network is used to represent the knowledge for solving a given task and has the ability to grow its structure. The genetic algorithm provides the neural network with training examples by actively exploring the example space of the problem. Integrated into the training examples by actively exploring the example space of the problem. Integrated into the GENIE system architecture, the genetic algorithm and the neural network build a virtually self-teaching autonomous learning system. This paper describes the structure of GENIE and its learning components. The performance is demonstrated on a robot learning problem. We also discuss the lessons learned from experiments with GENIE and point out further possibilities of effectively hybridizing genetic algorithms with neural networks and other softcomputing techniques.

  • PDF

무인선박의 항해시스템을 위한 항로계획 기법 (An Route Planning for the Navigation System of Autonomous vessel)

  • 조재희;지민수;김용기
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.418-424
    • /
    • 2005
  • 선박의 안전 운항과 운항 경비의 절감을 위해 선박의 운항 자동화 및 지능화 기술이 요구된다. 선박의 자동화를 위해서는 GPS와 전자해도에 기반한 항해시스템의 항로 계획이 선행되어야 한다. 본 논문에서는 항해시스템의 자동화된 항로 계획을 위해 장애물의 접점 산출 기법과 이를 이용한 트리 생성 기법, 그리고 생성된 트리 구조를 기반으로 한 항로 산출 기법을 제안한다. 제안한 항로 산출 기법의 효율성 검증을 위해 최적화 관점에서 대표적 항로 계획 기법인 A*기법과 비교$\cdot$분석한다.

Co-evolutionary Genetic Algorithm for Designing and Optimaizing Fuzzy Controller

  • Byung, Jun-Hyo;Bo, Sim-Kwee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.354-360
    • /
    • 1998
  • In general, it is very difficult to find optimal fuzzy rules by experience when a system is dynamical and/or complex. Futhermore proper fuzzy partitioning is not deterministic and there is no unique solution. Therefore we propose a new design method of an optimal fuzzy logic controller, that is a co-evolutionary genetic algorithm finding optimal fuzzy rule and proper membership functions at the same time. We formalize the relation between fuzzy rules and membership functions in terms of fitness. We review the typical approaching methods to co-evolutionary genetic algorithms , and then classify them by fitness relation matrix. Applications of the proposed method to a path planning problem of autonomous mobile robots when moving objects exist are presented to demonstrate the performance and effectiveness of the method.

  • PDF

HYBRID TOOLS IN INTELLIGENT ROBOT CONTROL

  • Kandel, Abraham;Langholz, Gideon;Schneider, Mordechay
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1297-1300
    • /
    • 1993
  • Machine learning in an uncertain or unknown environment is of vital interest to those working with intelligent systems. The ability to garner new information, process it, and increase the understanding/ capability of the machine is crucial to the performance of autonomous systems. The field of artificial intelligence provides two major approaches to the problem of knowledge engineering-expert systems and neural networks. Harnessing the power of these two techniques in a hybrid, cooperating system holds great promise.

  • PDF

Fuzzy Neural Network Based Sensor Fusion and It's Application to Mobile Robot in Intelligent Robotic Space

  • Jin, Tae-Seok;Lee, Min-Jung;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.293-298
    • /
    • 2006
  • In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.

단일 카메라를 사용한 독립형 자율이동로봇 개발 (A study on stand-alone autonomous mobile robot using mono camera)

  • 정성보;이경복;장동식
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.56-63
    • /
    • 2003
  • 본 논문은 실제 무인주행자동차에 적용할 수 있는 비전 기반의 소형 자율이동로봇 개발에 관한 연구를 제시한다. 이전의 자율주행차량은 하드웨어 설계의 복잡성, 실장의 어려움과 많은 계산량으로 인해 PC에 대한 의존도가 높았다. 본 논문에서는 고속에서 정확한 조향 및 빠른 이동을 할 수 있고, 단일 카메라를 사용한 독립형 시스템으로 지능적 인식을 할 수 있는 소형 자율이동로봇을 제안한다. 제안된 시스템은 폭 25~30cm, 총길이 200cm로 만들어진 트랙에서 실험하였다. 실험 로봇은 직선 트랙에서 평균 32.9km/h, 곡률반경 30~40m인 곡선트랙에서 평균 22.3km/h의 속도로 주행할 수 있었다 이 시스템은 실제 무인 자동차를 쉽게 만들기 위해 사용할 수 있는 차선 인식 알고리즘을 적용한 소형 자율이동로봇 시스템에 대한 하나의 모델을 제시할 수 있었다.

  • PDF