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HYBRID TOOLS IN INTELLIGENT ROBOT CONTROL
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ABSTRACT . Machine learning in an uncertain or unknown
environment is of vital interest to those working with intelligent
systems. The ability to garner new information, process it, and increase
the understanding/ capability of the machine is crucial to the
performance of autonomous systems. The field of artificial intelligence
provides two major approaches to the problem of knowledge engineering
- expert systems and neural networks. Harnessing the power of these

two techniques in a hybrid, cooperating system holds great promise.

1. INTRODUCTIONS

Expert systems and fuzzy expert systems [5] - [7] are strongly tied
to knowledge-based techniques for gathering and processing information.
Knowledge representation in such systems is most often in the form of
rules garnered through consultation with human experts. Coupling the
methods of approximate reasoning with knowledge-based techniques
yields systems which model human decision-making. There are many
examples of rule based systems which function as experts in a given
domain, e.g., trouble-shooting for complex mechanical processes,
medical diagnosis systems, and financial risk assessment. Expert
systems provide a ready mechanism for explanation why certain
decisions are made, even when the human expert is unable to articulate
the chain of reasoning leading to a decision. This trace of the reasoning
process is often crucial to those maintaining the system.

A major disadvantage of knowledge-based systems is their reliance
upon consultation with human experts for new information.
Furthermore, autonomous learning in an expert system does not usually

include the capability to synthesize new knowledge but is limited
nstead to dependence upon structures the designer builds in to asses the

similarity between situations or to generalize upon sets of similar rules.

Neural networks are data-driven systems based on an architecture of
many simple processing units which are interconnected. The knowledge
of a neural net resides in the connections between these processing units
and in the strengths of the connections. Neural networks are especially
applicable to problems which involve large numbers of weak
constraints. They have been successfully applied to perceptual tasks
such as pattern recognition, vision processing, and speech synthesis.

The ability to gracefully handle minor inconsistencies or conflicts
in the data is an advantage that neural network systems hold over most
expert systems. A robust intelligent system must be able to handle
conflicting information from different experts, or some degree of
contamination in incoming data, without too much degradation in
performance.

There are many scenarios in which both types of reasoning,
knowledge-based and data-driven, are appropriate. Hamessing the power
of both expert systems and neural networks in a system which allows
for imprecise information and/or uncertain environments would yield a

system more powerful than either system standing alone 3] - {4].

2. HYBRID INTELLIGENT SYSTEMS

Learning is an essential component for any intelligent system. One
focus of this proposal is on learning in a hybrid system, especially
learning in an autonomous or unsupervised mode. Michalski et al [12]
summarize the classic strategies and orientations in machine learning.
An autonomous system should be able to learn in an unsupervised
situation by experimentation, classification, recognition or similarity,
generalizing and applying appropriate previous solutions or
hypothesizing new solutions to situations never before encountered by
the system.

Learning in a neural network without the benefit of an initial base
of knowledge can be very slow to converge. Therefore, the premise in
this proposal is that learning can be implemented more efficiently in the
neural network when the expert system supplies the metaknowledge to

begin the learning process as well as accumulated knowledge in the
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system.

We are currently evaluating severgl models for the hybrid system
proposed. As a general premise, we believe that the most effective
model is one in which the expert system begins with a base of
knowledge which is necessarily incomplete, a neural network layer takes
the knowledge from the expert system and modifies it through learning,
and all infarmation can be passed easily and transparently from one part
of the system to another as needed.

Under consideration are several configurations of this basic model
which have different uses:

(1) Everything learned in the neural network is passed back to the
expert system. In effect, the neural network is training the expert
system. In this version, the user of the system is always able to trace
the decision-making process via the expert system.

(2) When a problem is presented to the hybrid system, it is partitioned
into segments which are evaluated to be appropriate for solution by
either the expert system layer or by the neural network layer. The
solution to the problem is a hybrid of the segment solutions. In this
version, the two layers act as cooperating partners, each doing what it
does best, keeping functional overlap to a minimum.

(3) An entire network of smaller systems, expert systems and neural
networks, coopefate and communicate to leamn in different modes, or in
different domains. Each part is designed with a different part of the
problem solution process in mind.

The fluid transfer of information from one type of system to the
other obviously is crucial to the models proposed. Having thoroughly
checked the interface with off-the-shelf packages, we plan to utilize an
expert system which may incorporate fuzzy linguistic quantifiers,
hedges, and weights, such as FEST [6), or develop other systems as
needed.

Another issue of interest is the application of uncertainty
management techniques within the hybrid intelligent system to better
model the human reasoning process. Most conventional rule-based
systems allow the use of certainty factors to represent the fact that a rule
does not hold true for all situations satisfying the antecedent conditions.

In fuzzy reasoning, we consider the degree to which a rule agrees with
our current understanding of reality rather than the probability that it is a

true description of that reality.

The sensitivity of learning in the neural network to the use of
linguistic variables as weights and linguistic hedges will be
investigated. One way to measure this sensitivity is to compare the rate
of change in what has been learned against the change in the certainty
factors or weights.

The expert system, neural network, and learning algorithm are
implemented as separate functional units. The only means of
communication between the units is the relevant data structure. The
data structure common to the expert system and neural network is the

rule base, whereas the data structure common to the neural network and

the learning unit is the collgcu'on of state arrays.

It should be pointed out that the transfer of knowledge between
system components is bidirectional and it is precisely the learning
capabilities of neural networks that enable the intelligent system to infer
new rules or modify existing rules based on neural network performance.
The division of labor, by providing the system with whatever
knowledge is available a priori through the expert system and the
knowledge-base, and by developing optional learning strategies for the
neural network, is precisely the technology that will provide us with
fast, autonomous effective learning on top of previously acquired
knowledge.

It is the cooperation of an expert system with a given
knowledge-base and a neural network with the leaming capabilities that
enables this technology to execute tasks in an autonomous imprecise
and somewhat unpredictable environment.

As was shown before (8], the functional components of the
inference engine in the expert system can be mapped to the functional
components of a node in the neural network, as shown in the following
table:

Ni rk Expert System
Internal state Intemnal
Combining function Internal state
Output value Evidenciary combining function

Activation function Output value

Firing function

Work by Kuncicky and Kandel (9], which is based on [2], notes
graceful degradation and restoration from partial inputs using the fuzzy
expected value (FEV) and the weighted fuzzy expected value (WFEV) as
combination functions. In a translation model, the choice of a
combining rule is dependent upon the combining rule of the particular
expert system that is used. This places qualitative limitations on the
properties of the network dynamics. Some combining rules, such as
max-min composition, do not meet the criterion of threshold

sensitivity.

3. INTELLIGENT ROBOT CONTROL

Conventional control systems design methodology involves the
construction of a mathematical model describing the dynamic system to
be controlled and the application of analytical techniques to this model
to derive a control law. Robust control design produces a constant gain
controller which stabilizes a class of linear systems over a range of
system parameters. Adaptive control adjusts the controller
characteristics to stabilize a system with unknown parameters. Adaptive
control is particularly critical for enhanced functionality and error
detection and correction. Error detection and correction are associated
with monitoring-execution mechanisms to ensure compliance with the
expected task sequence, to measure expected errors, and to correct them

dynamically.
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Conventional control techniques break down, however, when a
representative model is difficult to obtain due to uncertainty, or sheer
complexity. Model uncertainty is a serious problem in designing
intelligent robot control laws. Often it is impossible to adequately
represent system characteristics such as nonlinearity, time delay,
saturation, time-varying parameters, and overall complexity. Thus,
autonomous intelligent control systems require significantly enhanced
capabilities to achieve real-time operational responses when the
decision-making process is based on incomplete information,
uncertainty, and competing constraints.

Biological systems, on the other hand, handle ill-structured

problems with remarkable ease and flexibility. They are quite successful
in dealing with uncertainty, complexity, and nonlinearities. They

coordinate smoothly many degrees of freedom during the execution of
dexterous manipulative tasks within unstructured environments, solve
complex planning problems with apparent ease, and are able to adapt
their structure and function.

Important features of biological control systems include:

(1) Hierarchical and modular processing architecture.

(2) Distributed computation among the various levels of the hierarchy.
(3) Utilization of tightly integrated, yet distinct, forms of sensorimotor
process-ing during the acquisition of motor skills.

It seems therefore desirable to turn to biologically-inspired
paradigms in developing efficient processing architectures and learning
procedures to improve the performance and adaptability of intelligent
control systems. These biological paradigms, namely, artificial neural
networks, seem to be potentially useful in treating many problems that
cannot be handled by traditional analytical approaches. For example,
back-propagation neural networks currently are the most prevalent neural
network architectures for control applications because they have the

capability to 'learn’ system characteristics through nonlinear mappings.

4. THE NEURAL NETWORK APPROACH

Current adaptive control techniques reveal fundamental
shortcomings in terms of implementing robot control laws. Adaptive
control laws, such as Mode! Reference Adaptive Control, Self Tuning
Regulator, and Gain Scheduling [1], [11] are nonlinear control laws
which are difficult to derive, their complexity grows geometrically with
the number of unknown parameters, they are not robust, they are
conditionally stable, and often they are not suitable for real-time
applications.

In contrast, control architectures based on neural networks are
specifically suitable to implement general purpose trainable adaptive
controllers for robotic control. Trainable adaptive controllers are process
controllers where much of the design is done online via training rather
than programming.

Neural networks are inherently robust and are massively parallel,

adaptive, dynamical systems modeled on the general features of

biological networks. Due to the availability of advanced VLSI
implementation techniques and the demand for massive parallelism to
achieve real-time information processing, there has been tremendous
interest in the applications of neural networks to achieve human-like
performance in the field of robotics.

Neural networks interact with objects of the real world and its
statistical characteristics in much the same way living beings do. They
consist of densely interconnected processing elements, or neurons. Each
neuron is provided with the ability to self-adjust some of the coefficients
in its governing differential equations. Thus, the network as a whole
becomes a self-adapting dynamic system, capable of learning and
self-organizing, and operating in a highly parallel distributed manner,
most suitable for high-performance information processing.

Collectively, neurons with simple properties, interacting according
to simple rules, can accomplish complex functions such as
generalization, error correction, information reconstruction, pattern
analysis, and learning. Their paradigmatic strength for potential
applications, which require solving intractable computational problems
or adaptive modeling, arises from their ability to achieve functional
synthesis, and thereby learn topological mappings and abstract spatial,
functional, or temporal invariances of these mappings. Thus,
relationships among multiple continuous-valued inputs and outputs can
be established, based on presentation of various representative examples.

Once the underlying invariances have been learned and encoded in
the topology and the interconnections weights, the neural network can
generalize to solve arbitrary problem instances. Since the topological
mappings for problem-solving are acquired from real-world examples,
the functionality of the neural network is not limited by assumptions
regarding parametric or environmental uncertainty. Thus, neural
networks provide an attractive algorithmic basis for solving fundamental
design problems of autonomous intelligent control systems.

In addition to that, neural networks also provide a greater degree of
robustness or fault tolerance than the conventional von Neumann
sequential machines. Damage to a few neurons or connections does not
impair overall performance significantly. Since most neural network

models tend to adapt connection weights so as to self-organize internal

representations in response to the continuously changing inputs,
adaptation also provides a degree of robustness by compensating for

minor variabilities in the characteristics of neurons.

5. THE HYBRID INTELLIGENT SYSTEM SOLUTION

The hybrid intelligent system carries a step further the approach
presented in the previous section. It provides a integrated tool which
could form the basis for a potentially fruitful approach to intelligent
robot control problems. The expert system provides us with a tool to
handle a priori knowledge whereas the neural network offers potentially
powerful collective-computation techniques, as well as learning

capabilities in an adaptive environment,
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We see the use of hybrid intelligent system in robot control as a
natural step in the evolution of robot control methodology to meet new
challenges. The 'cooperative structure of the hybrid system,
incorporating a priori knowledge, learning capabiiities, and massive
parallelism, offers solutions to several critical issues that are essential
for intelligent solving robot control problems.

Knowledge based systems provide a convenient mechanism for
automated complex decision-making with task-specific knowledge being
defined explicitly. Neural networks, on the other hand, encode
knowledge implicitly, adjusting internal weights so that their
input/output relationships remain consistent with observed training data.

Our emphasis is on the mechanism for shifting knowledge and
control between the two components of the hybrid system, in order to
utilize the strengths of each processing technique. First, the
knowledge-based system determines how to accomplish a given control
objective using rules and algorithms within the knowledge base. It then
teaches the neural network how to accomplish the same task by having
the neural network observe and generalize on knowledge-based task
execution. As the neural network assumes more control
responsibilities, its task execution becomes optimized through
reinforcement learning. Based on the performance of the neural network,
knowledge is transferred back to the knowledge-based system to infer
new rules or modify existing ones if applicable.

One scheme proposed to classify memory and learning distinguishes
between declarative and reflexive mechanisms [10]. Motions involving

declarative mechanisms are characterized by inference, comparison and
evaluation, and provide insight into how something is done and why it
is done. Motions involving reflexive mechanisms relate specific
responses to specific stimuli, are automatic, and require little or no
thought. Tasks initially learned declaratively often become reflexive
through repetition. Conversely, when familiar tasks are attempted in
novel situations, reflexive knowledge must be converted back into
declarative form to become useful. This shifting of task-specific
knowledge between declarative and reflexive forms plays a fundamental
role in skill acquisition.

In terms of this scheme, the declarative form of processing is
implemented in our hybrid intelligent system by knowledge-based expert
systems whereas the reflexive form of processing is implemented using
neural networks.

In order to be effective in a dynamic and uncertain scenario, an
intelligent robust robot control system must be able to automatically
acquire necessary information from the environment. The learning
capabilities of our proposed system would thus facilitate two main
advances for intelligent robot control:

(1) Autonomous knowledge acquisition via learning; and
(2) Continuous system refinement to improve the performance of the
identification system.

The integration of the expert system and neural network would

minimize the "learning time" through the use of the expert system for a
priori knowledge, as well as utilizing the learning capabilities and the
parallelism of the neural network. The use of the hybrid system to
achieve just these two modifications could serve to significantly advance
the present capabilities of robotic control systems. The learning
capabilities of the system are one of the main strengths of the hybrid
approach. Integrated with expert system technology it could be used as
a powerful tool for addressing robotic needs for adaptation to both task
and environment changes, selection of optional task features, and

incorporating a priori knowledge regarding uncertain environments.
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