• Title/Summary/Keyword: Autonomous intelligent

Search Result 679, Processing Time 0.025 seconds

Structural Design of Arrival/Departure Support System for Autonomous Ship (자율운항선박 입출항지원시스템의 스마트항만 연동 구조 설계)

  • Minju Kang;Jeonghong Park;Dong-Ham Kim;Jungwook Han;Sangwoong Yun;Hyejin Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.293-294
    • /
    • 2022
  • In recent years, the maritime industry system including port facilities, VTS(Vessel traffic service) is rapidly evolving with the development of technology. The connection between systems has been greatly expanded, and many research cases using this connectivity have been reported. This paper deals with the structural design of the arrival/departure support system for an autonomous ship. The system requires navigation data from the autonomous ship and radar/AIS data from the port. In this paper, design result on how the arrival/departure support system interacts with the autonomous ship and port system are addressed.

  • PDF

Technological Trends of Intelligent Agricultural Machinery (지능형 농기계 기술 동향)

  • Hwanseon Kim;Soyun Gong;Joongyong Rhee;Jong-Guk Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.80-91
    • /
    • 2023
  • The purpose of this study is to suggest the direction for the development of intelligent agricultural machinery technology in the Republic of Korea. For this purpose, intelligent technology of agricultural machinery was divided into autonomous agricultural machinery and tractor-implement intelligent communication technology. Then, a survey and analysis of a previous study of the Republic of Korea and foreign countries were conducted. GNSS-based autonomous driving technology is still widely used worldwide, and recently, as research on camera and LiDAR-based autonomous driving is actively progressing, autonomous driving technology is becoming more advanced. ISOBUS-based technology is being developed worldwide for intelligent control of tractor-attached implements, and major global agricultural machinery manufacturers are actively applying it to their products. However, although some ISOBUS technologies are being researched in the Republic of Korea, there are no cases of application on agricultural machinery yet. Therefore, to be globally competitive in the agricultural machinery manufacturing industry, there is an urgent need to advance autonomous driving technology and commercialize agricultural machinery using ISOBUS technology.

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

Intelligent Motion and Autonomous Maneuvering of Mobile Robots using Hybrid System (하이브리드 시스템을 이용한 이동로봇의 지능적 동작과 자율주행)

  • 이용미;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.152-152
    • /
    • 2000
  • In this paper, we propose a new approach to intelligent motion and autonomous maneuvering of mobile robots using hybrid system. In high Level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot as a low vevel are specified in the abstracted motions, The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments.

  • PDF

Model-based Design for Autonomous Defense Systmes (자치적 방어 시스템을 위한 모델베이스기반 설계)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.89-99
    • /
    • 1999
  • The major objective of this research is to propose a design architecture for autonomous defense systems for supporting highly intelligent behavior by combining decision, perception, and action components. Systems with such high levels of autonomy are critical for advanced battlefield missions. By integrating a plenty of advanced modeling concepts such as system entity structure, endomorphic modeling, engine-based modeling, and hierarchical encapsulation & abstraction principle, we have proposed four layered design methodology for autonomous defense systems that can support an intelligent behavior under the complicated and unstable warfare. Proposed methodology has been successfully applied to a design of autonomous tank systems capable of supporting the autonomous planning, sensing, control, and diagnosis.

  • PDF

An Automated Negotiation System Using Intelligent Agents (지능형 에이전트를 이용한 자동협상전략 수립 시스템)

  • Park, Se-Jin;Kwon, Ick-Hyun;Shin, Hyun-Joon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.20-30
    • /
    • 2006
  • Due to recent growing interest in autonomous software agents and their potential application in areas such as electronic commerce, the autonomous negotiation become more important. Evidence from both theoretical analysis and observations of human interactions suggests that if decision makers have prior information on opponents and furthermore learn the behaviors of other agents from interaction, the overall payoff would increase. We propose a new methodology for a strategy finding process using data mining in autonomous negotiation system; ANSIA(Autonomous Negotiation System using Intelligent Agent). ANSIA is a strategy based negotiation system. The framework of ANSIA consists of three component layers; 1) search agent layer, 2) data mining agent layer and 3) negotiation agent layer. ANSIA is motivated by providing a computational framework for negotiation and by defining a strategy finding model with an autonomous negotiation process.

Speed and Steering Control of Autonomous Vehicle Using Neural Network (신경회로망을 이용한 자율주행차량의 속도 및 조향제어)

  • 임영철;류영재;김의선;김태곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.274-281
    • /
    • 1998
  • This paper describes a visual control of autonomous vehicle using neural network. Visual control for road-following of autonomous vehicle is based on road image from camera. Road points on image are inputs of controller and vehicle speed and steering angle are outputs of controller using neural network. Simulation study confirmed the visual control of road-following using neural network. For experimental test, autonomous electric vehicle is designed and driving test is realized

  • PDF

An autonomous control framework for advanced reactors

  • Wood, Richard T.;Upadhyaya, Belle R.;Floyd, Dan C.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.896-904
    • /
    • 2017
  • Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

Design of Intelligent Parking System for Autonomous Vehicle at the Slant Space (자율주행 차량을 위한 지능형 경사 주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.219-222
    • /
    • 2008
  • Recently, parking problems for an autonomous vehicle have attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based parking system at the slant parking space which is a important part for designing a autonomous parking system. We first design an optimal parking path for the slant space and present the simulation results of the fuzzy logic based parking system.

  • PDF

An intelligent control system design for autonomous underwater vehicle (무인 수중운동체를 위한 지능제어시스템 설계)

  • Lee, Dong-Ik;Kwak, Dong-Hoon;Choi, Jung-Lak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.227-237
    • /
    • 1997
  • Autonomous Underwater Vehicles(AUVs) have become an important tool for various purposes in subsea: inspection, recovery, construction, etc., and the development of autonomous control system is luglay desirable- thete zffe many problems associated with designing the control system for AUV due to unknown underwater envimn-Tnent, the possibility of subsystem failures, and unpredictable changes in the dynamics of the vehicle. In this paper, an autonomous control system based on the intelligent control theory to enhance operation efficiency of the ALTV is presented. The control system has a hierarchical structure which consists of mission planning level, mission control level, navigation level, and execution level. The performance of the control system is investigated by computer simulation. The results show that the proposed control system can be applied successfully to the AUV in spite of the possibility of failures in the vehicle and the collision hazard in the sea environment.

  • PDF