• Title/Summary/Keyword: Autonomous Mobile robots

Search Result 243, Processing Time 0.018 seconds

Indoor Localization for Mobile Robot using Extended Kalman Filter (확장 칼만 필터를 이용한 로봇의 실내위치측정)

  • Kim, Jung-Min;Kim, Youn-Tae;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.706-711
    • /
    • 2008
  • This paper is presented an accurate localization scheme for mobile robots based on the fusion of ultrasonic satellite (U-SAT) with inertial navigation system (INS), i.e., sensor fusion. Our aim is to achieve enough accuracy less than 100 mm. The INS consist of a yaw gyro, two wheel-encoders. And the U-SAT consist of four transmitters, a receiver. Besides the localization method in this paper fuse these in an extended Kalman filter. The performance of the localization is verified by simulation and two actual data(straight, curve) gathered from about 0.5 m/s of driving actual driving data. localization methods used are general sensor fusion and sensor fusion through Kalman filter using data from INS. Through the simulation and actual data studies, the experiment show the effectiveness of the proposed method for autonomous mobile robots.

Position Estimation of Autonomous Mobile Robot Using Geometric Information of a Moving Object (이동물체의 기하학적 위치정보를 이용한 자율이동로봇의 위치추정)

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.438-444
    • /
    • 2004
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using the a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Since the equations are based or the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot. The Kalman filter scheme is applied for this method. its performance is verified by the computer simulation and the experiment.

Localization of Outdoor Wheeled Mobile Robots using Indirect Kalman Filter Based Sensor fusion (간접 칼만 필터 기반의 센서융합을 이용한 실외 주행 이동로봇의 위치 추정)

  • Kwon, Ji-Wook;Park, Mun-Soo;Kim, Tae-Un;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.800-808
    • /
    • 2008
  • This paper presents a localization algorithm of the outdoor wheeled mobile robot using the sensor fusion method based on indirect Kalman filter(IKF). The wheeled mobile robot considered with in this paper is approximated to the two wheeled mobile robot. The mobile robot has the IMU and encoder sensor for inertia positioning system and GPS. Because the IMU and encoder sensor have bias errors, divergence of the estimated position from the measured data can occur when the mobile robot moves for a long time. Because of many natural and artificial conditions (i.e. atmosphere or GPS body itself), GPS has the maximum error about $10{\sim}20m$ when the mobile robot moves for a short time. Thus, the fusion algorithm of IMU, encoder sensor and GPS is needed. For the sensor fusion algorithm, we use IKF that estimates the errors of the position of the mobile robot. IKF proposed in this paper can be used other autonomous agents (i.e. UAV, UGV) because IKF in this paper use the position errors of the mobile robot. We can show the stability of the proposed sensor fusion method, using the fact that the covariance of error state of the IKF is bounded. To evaluate the performance of proposed algorithm, simulation and experimental results of IKF for the position(x-axis position, y-axis position, and yaw angle) of the outdoor wheeled mobile robot are presented.

Practical Path-planning Framework Considering Waypoint Visibility for Indoor Autonomous Navigation using Two-dimensional LiDAR Sensors (경유지의 가시성을 고려한 2차원 라이다 센서 기반의 실용적인 경로 계획 프레임워크)

  • Hyejeong Ryu
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.196-202
    • /
    • 2024
  • Path-planning, a critical component of mobile robot navigation, comprises both local and global planning. Previous studies primarily focused on enhancing the individual performance of these planners, avoiding obstacles, and computing an optimal global path from a starting position to a target position. In this study, we introduce a practical path-planning framework that employs a target planner to bridge the local and global planners; this enables mobile robots to navigate seamlessly and efficiently toward a global target position. The proposed target planner assesses the visibility of waypoints along the global path, and it selects a reachable navigation target, which can then be used to generate efficient control commands for the local planners. A visibility-based target planner can handle situations, wherein the current, target waypoint is occupied by unknown obstacles. Real-world experiments demonstrated that the proposed pathplanning framework with the visibility-based target planner allowed the robot to navigate to the final target position along a more efficient path than the framework without a target planner.

Protocol Design for Fire Receiver­based Fire Detection Robots (화재수신기 기반의 화재감시로봇을 위한 프로토콜 설계)

  • Lim, Jong-Cheon;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.452-459
    • /
    • 2018
  • Conventional fire fighting robots are controlled by a remote control to monitor the fire scene or to suppress the fire. However, this method has a problem that it takes a long time to prepare robot and input it to fire place in the golden time after the fire, so that it can not sufficiently serve as a fire fighting robot. Using the autonomous driving fire monitoring robot, when a fire signal is generated, in conjunction with a fire receiver a moving robot takes a video of the fire scene and delivers the image to the fire department, so that the fire fighter can decide if it is real fire or not. Thereby it is possible to prevent a sudden spread of an accident by providing a quick judgment opportunity and at the same time suppressing the fire early. In this paper, we propose an architecture of the autonomous mobile fire monitoring robot and the communication protocol required for the robot to work with the fire receiver. A communication protocol is designed to control multiple fire monitoring robots in real time, and a communication with a fire receiver is designed as a hierarchical network to serve as an interface of an Ethernet network using wireless Wi-Fi. The fire monitoring robot and the wireless communication of the fire receiving period are implemented and the effectiveness of the operation is confirmed through the field test.

ELA: Real-time Obstacle Avoidance for Autonomous Navigation of Variable Configuration Rescue Robots (ELA: 가변 형상 구조로봇의 자율주행을 위한 실시간 장애물 회피 기법)

  • Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.186-193
    • /
    • 2008
  • We propose a novel real-time obstacle avoidance method for rescue robots. This method, named the ELA(Emergency Level Around), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward safe position. In the ELA, we consider two sensor modules, PSD(Position Sensitive Detector) infrared sensors taking charge of obstacle detection in short distance and LMS(Laser Measurement System) in long distance respectively. Hence if a robot recognizes an obstacle ahead by PSD infrared sensors first, and judges impossibility to overcome the obstacle based on driving mode decision process, the order of priority is transferred to LMS which collects data of radial distance centered on the robot to avoid the confronted obstacle. After gathering radial information, the ELA algorithm estimates emergency level around a robot and generates a polar histogram based on the emergency level to judge where the optimal free space is. Finally, steering angle is determined to guarantee rotation to randomly direction as well as robot width for safe avoidance. Simulation results from wandering in closed local area which includes various obstacles and different conditions demonstrate the power of the ELA.

  • PDF

Behavior Learning and Evolution of Swarm Robot System using Support Vector Machine (SVM을 이용한 군집로봇의 행동학습 및 진화)

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.712-717
    • /
    • 2008
  • In swarm robot systems, each robot must act by itself according to the its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method with SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of SVM is adopted in this paper.

A Study on Optimization of Motion Parameters and Dynamic Analysis for 3-D.O.F Fish Robot (3 자유도 물고기 로봇의 동적해석 및 운동파라미터 최적화에 관한 연구)

  • Kim, Hyoung-Seok;Quan, Vo Tuong;Lee, Byung-Ryong;Yu, Ho-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1029-1037
    • /
    • 2009
  • Recently, the technologies of mobile robots have been growing rapidly in the fields such as cleaning robot, explosive ordnance disposal robot, patrol robot, etc. However, the researches about the autonomous underwater robots have not been done so much, and they still remain at the low level of technology. This paper describes a model of 3-joint (4 links) fish robot type. Then we calculate the dynamic motion equation of this fish robot and use Singular Value Decomposition (SVD) method to reduce the divergence of fish robot's motion when it operates in the underwater environment. And also, we analysis response characteristic of fish robot according to the parameters of input torque function and compare characteristic of fish robot with 3 joint and fish robot with 2 joint. Next, fish robot's maximum velocity is optimized by using the combination of Hill Climbing Algorithm (HCA) and Genetic Algorithm (GA). HCA is used to generate the good initial population for GA and then use GA is used to find the optimal parameters set that give maximum propulsion power in order to make fish robot swim at the fastest velocity.

Optimization of Code Combination in Multi-Code Ultrasonic Sensors for Multi-Robot Systems (군집로봇을 위한 다중 코드 초음파센서의 코드조합 최적화)

  • Moon, Woo-Sung;Cho, Bong-Su;Baek, Kwang Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.614-619
    • /
    • 2013
  • In multi-robot systems, ultrasonic sensors are widely used for localization and/or obstacle detection. However, conventional ultrasonic sensors have a drawback, that is, the interference problem among ultrasonic transmitters. There are some previous studies to avoid interferences, such as TDMA (Time Division Multiple Access) and CDMA (Code Division Multiple Access). In multiple autonomous mobile robots systems, the Doppler-effect has to be considered because ultrasonic transceivers are attached to the moving robots. To overcome this problem, we find out the ASK (Amplitude Shift Keying)-CDMA technique is more robust to the Doppler-effect than the BPSK (Binary Phase Shift Keying)-CDMA technique. In this paper, we propose a new code-expression method and a Monte-Carlo based algorithm that optimizes the ultrasonic code combination in the ASK-CDMA ultrasonic system. The experimental results show that the proposed algorithm improves the performance of the ultrasonic multiple accessing capacity in the ASK-CDMA ultrasonic system.

Behavior Learning and Evolution of Swarm Robot System using Q-learning and Cascade SVM (Q-learning과 Cascade SVM을 이용한 군집로봇의 행동학습 및 진화)

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.279-284
    • /
    • 2009
  • In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method using many SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of Cascade SVM is adopted in this paper.