• 제목/요약/키워드: Autonomous IoT

검색결과 84건 처리시간 0.024초

우분투 기반 라즈베리 파이3의 영상 인식 시스템 개발 (Development of Ubuntu-based Raspberry Pi 3 of the image recognition system)

  • 김규현;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.868-871
    • /
    • 2016
  • 최근 IoT를 활용한 웨어러블 기기 및 무인 이동체에 관한 연구가 활발히 진행되고 있다. 그 중 무인 이동체는 IT 기술들의 집약체라고 할 수 있다. 로봇, 자율 주행, 장애물 회피, 데이터 통신, 전력, 영상 처리 등의 기술들이 합쳐진 것을 무인 이동체 또는 무인 로봇이라고 부른다. 무인 이동체의 최종 목표는 수동이 아닌 자율 주행을 하여 목적지까지 안전하고 신속하게 도달하는 것을 목표로 한다. 본 논문에서는 무인 이동체의 기술들 중 하나인 영상 처리 분야를 다루고자 한다. 현재 배터리의 기술로는 무인 이동체가 최대 1시간까지 주행할 수밖에 없다는 것을 감안하여, 전력 소비를 최소한으로 줄이기 위해 소형 컴퓨터인 라즈베리 파이3를 사용하여 영상 인식 시스템을 설계하고자 한다. 제안하고자 하는 시스템은 카메라로부터 받는 영상의 모든 것을 인식하는 시스템을 목표로 한다.

  • PDF

Predictive maintenance architecture development for nuclear infrastructure using machine learning

  • Gohel, Hardik A.;Upadhyay, Himanshu;Lagos, Leonel;Cooper, Kevin;Sanzetenea, Andrew
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1436-1442
    • /
    • 2020
  • Nuclear infrastructure systems play an important role in national security. The functions and missions of nuclear infrastructure systems are vital to government, businesses, society and citizen's lives. It is crucial to design nuclear infrastructure for scalability, reliability and robustness. To do this, we can use machine learning, which is a state of the art technology used in various fields ranging from voice recognition, Internet of Things (IoT) device management and autonomous vehicles. In this paper, we propose to design and develop a machine learning algorithm to perform predictive maintenance of nuclear infrastructure. Support vector machine and logistic regression algorithms will be used to perform the prediction. These machine learning techniques have been used to explore and compare rare events that could occur in nuclear infrastructure. As per our literature review, support vector machines provide better performance metrics. In this paper, we have performed parameter optimization for both algorithms mentioned. Existing research has been done in conditions with a great volume of data, but this paper presents a novel approach to correlate nuclear infrastructure data samples where the density of probability is very low. This paper also identifies the respective motivations and distinguishes between benefits and drawbacks of the selected machine learning algorithms.

타원형 압전 에너지 하베스터의 기계적 모델링 연구 (Study of Mechanical Modeling of Oval-shaped Piezoelectric Energy Harvester)

  • 최재훈;정인기;강종윤
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.36-40
    • /
    • 2019
  • Energy harvesting is an advantageous technology for wireless sensor networks (WSNs) that dispenses with the need for periodic replacement of batteries. WSNs are composed of numerous sensors for the collection of data and communication; hence, they are important in the Internet of Things (IoT). However, due to low power generation and energy conversion efficiency, harvesting technologies have so far been utilized in limited applications. In this study, a piezoelectric energy harvester was modeled in a vibration environment. This harvester has an oval-shaped configuration as compared to the conventional cantilever-type piezoelectric energy harvester. An analytical model based on an equivalent circuit was developed to appraise the advantages of the oval-shaped piezoelectric energy harvester in which several structural parameters were optimized for higher output performance in given vibration environments. As a result, an oval-shaped energy harvester with an average output power of 2.58 mW at 0.5 g and 60 Hz vibration conditions was developed. These technical approaches provided an opportunity to appreciate the significance of autonomous sensor networks.

The Development Progress of Korean Aviation Industry and its Investment Strategy Based on the Evidence and the 4th Industrial Revolution

  • Kim, Jongbum
    • International Journal of Aerospace System Engineering
    • /
    • 제5권2호
    • /
    • pp.1-7
    • /
    • 2018
  • This study examines the history of Korean aviation industry and presents the investment strategy based on the evidence and the 4th industrial revolution. Looking at the evolution of the Korean aviation industry and its technological development will be a great help to support industrial and technological innovation in the future. The modern aviation industry is divided into stages of development, focusing on maintenance of equipment introduced in advanced countries, localization through license assembly, production of products based on technology, and international joint development. The development of aeronautics technology has been progressing towards a general improvement of economic efficiency, aircraft safety efficiency through environmental-friendliness, unmanned operation, and downsizing. The Korea Aerospace Research Institute has secured key technologies through development of several aircrafts such as Experimental Aircraft Kachi, EXPO Unmanned Airship, Twin-engine Composite Aircraft, Canard Aircraft, Multi-Purpose Stratosphere unmanned-airship, Medium Aerostats, Smart UAV, Surion, EAV-2H, KC-100, and OPV. The development strategy is discussed at the level of the evidence-based investment strategy that is currently being discussed, and so the investment priorities in aircraft is high. Current drone usage and development direction are not only producing parts using 3D printer, but also autonomous flight, communication (IoT, 5G), information processing (big data, machine learning). Therefore, the aviation industry is expected to lead the fourth industrial revolution.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • 제9권1호
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

임베디드 보드 기반의 교육용 차동 구동 로봇 플랫폼 개발 (Development of Embedded Board-based Differential Driving Robot Platform for Education)

  • 최현주;이동현
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.123-128
    • /
    • 2022
  • This paper proposes a mobile robot platform for education that can experiment with various autonomous driving algorithms such as obstacle avoidance and path planning. The platform consists of a robot module and a remote controller module, both of which are based on the Arduino Nano 33 IoT embedded board. The robot module is designed as a differential drive type using two encoder motors, and the speed of the motor is controlled using PID control. In the case of the remote controller module, a command to control the robot platform is received with a 2-axis joystick input, and an elliptical grid mapping technique is used to convert the joystick input into a linear and angular velocity command of the robot. WiFi and Zigbee are used for communication between the robot module and the remote controller module. The proposed robot platform was tested by measuring and comparing the linear velocity and angular velocity of the actual robot according to the linear velocity and angular velocity commands of the robot generated by the input of the joystick.

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • 제9권1호
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

Real time instruction classification system

  • Sang-Hoon Lee;Dong-Jin Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.212-220
    • /
    • 2024
  • A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.

안전취약계층을 위한 재난정보 및 대피지원 모델 실증 (Demonstration of Disaster Information and Evacuation Support Model for the Safety Vulnerable Groups)

  • 손민호;권일룡;정태호;이한준
    • 한국재난정보학회 논문집
    • /
    • 제17권3호
    • /
    • pp.465-486
    • /
    • 2021
  • 연구목적: 대부분의 재난정보 시스템은 비장애인 중심이므로 재난대처능력이 상대적으로 취약한 장애인·노인·어린이 등 안전취약계층을 고려한 재난정보 전달 체계는 부족한 것이 현실이다. 장애인과 노인의 안전취약특성을 고려하여 재난정보 전달 및 대피지원 서비스를 구축하는데 IoT 기반의 통합관제 기술을 활용하는 서비스 제공을 통해서 정보화의 사각지대를 해소하고 장애인·노인의 재난 대응을 위한 맞춤형 재난정보 서비스를 구축하여 안전취약계층의 안전성을 향상시키는데 목적이 있다. 연구방법: 본 연구의 핵심이 되는 모델은 재난경보 전파 모델과 대피지원 모델이며, 장애인과 노인의 재난 상황 발생 시 행동특성을 반영하여 개발하였다. 재난정보 전파 모델은 IoT 기술을 이용하여 수집된 재난상황을 전파하며, 대피지원 모델은 지구자기장 기반의 측위기술을 활용하여 사용자의 실내위치를 파악하고 실내 대피경로 데이터를 기반으로 한 경로안내 등 안전취약계층의 행동특성을 반영한 맞춤형 서비스 제공을 통해 안전하게 대피할 수 있도록 도움을 주게 된다. 연구결과: 시범모델 실증은 실제 사용자를 대상으로 개발된 서비스를 사용해보도록하여 사용자 입장에서 대피경로 안내의 적합성, 서비스의 만족도 등 실내위치 정확도에 대한 효율성 등 정성적인 평가를 도출하였다. 결론: 모델 실증을 위하여 모바일 앱 안전취약계층을 위한 재난정보와 대피지원 서비스를 구축하였다. 재난상황을 화재상황으로 한정하여 장애우와 관련 분야 전문가를 통해 실증하였다. 재난정보전달과 대피지원의 적절성에서 "만족" 평가를 받았으며 시범모델의 특성상 기능 만족도와 사용자 UI는 "보통"으로 평가되었다. 이를 통해 본 연구에서 제시된 재난정보 및 대피지원 서비스는 안전취약계층에게 재난대피 골드타임을 놓치지 않고 보다 신속한 재난대피를 지원하는 것으로 평가되었다.

코로나 이전과 이후의 4차 산업혁명과 광고의 뉴스기사 분석 : LDA와 Word2vec을 중심으로 (News Article Analysis of the 4th Industrial Revolution and Advertising before and after COVID-19: Focusing on LDA and Word2vec)

  • 차영란
    • 한국콘텐츠학회논문지
    • /
    • 제21권9호
    • /
    • pp.149-163
    • /
    • 2021
  • 4차 산업혁명이란 인공지능(AI), 사물인터넷(IoT), 로봇기술, 드론, 자율주행과 가상현실(VR) 등 정보통신 기술이 주도하는 차세대 산업혁명을 말하는 것으로, 광고 산업 발전에도 큰 영향을 미쳤다. 그러나 지금 전세계는 코로나 확산 방지를 위하여, 비접촉, 비대면 생활환경으로 급속도로 빠르게 변화하고 있다. 이에 따라 4차 산업혁명과 광고의 역할도 변화하고 있다. 따라서 본 연구에서는 코로나 19 이전과 이후의 4차산업 혁명과 광고의 변화를 살펴보기 위해 빅카인즈를 활용해서 텍스트 분석을 하였다. 코로나 19 이전인 2019년과 코로나 19 이후인 2020년을 비교하였다. LDA토픽 모형 분석과 딥러닝 기법인 Word2vec을 통해 주요 토픽과 문서분류를 하였다. 연구결과 코로나19 이전에는 정책, 콘텐츠, AI 등이 나타났으나, 코로나 이후에는 데이터를 활용한 금융, 광고, 배달 등으로 점차 영역이 확장되며, 더불어 인재양성 교육이 중요한 이슈로 나타난 것을 알 수 있었다. 또한, 코로나 19 이전에는 4차 산업혁명 기술과 관련된 광고를 활용하는 것이 주류를 이루었다면, 코로나 19 이후에는 참여, 협력, 일상 필요 등 좀 더 적극적으로 첨단기술 자체에 대한 교육과 인재양성 등에 대한 키워드가 두드러지게 나타나고 있다. 따라서 이러한 연구결과는 코로나 19 이후에 4차 산업혁명에서 광고의 나아갈 방향을 제시하면서, 이에 필요한 이론적, 실무적으로 적용할 수 있는 다각적인 전략을 제시하는 데 의의가 있다.