Lane change in urban environments is a challenge for both human-driving and automated driving due to their complexity and non-linearity. With the recent development of deep-learning, the use of the RNN network, which uses time series data, has become the mainstream in this field. Many researches using RNN show high accuracy in highway environments, but still do not for urban environments where the surrounding situation is complex and rapidly changing. Therefore, this paper proposes a lane change possibility decision network by adopting Attention layer, which is an SOTA in the field of seq2seq. By weighting each time step within a given time horizon, the context of the road situation is more human-like. A total 7D vectors of x, y distances and longitudinal relative speed of side front and rear vehicles, and longitudinal speed of ego vehicle were used as input. A total 5,614 expert data of 4,098 yield cases and 1,516 non-yield cases were used for training, and the performance of this network was tested through 1,817 data. Our network achieves 99.641% of test accuracy, which is about 4% higher than a network using only LSTM in an urban environment. Furthermore, it shows robust behavior to false-positive or true-negative objects.
As the requirement of the in vehicle infotainment service increases, the role of the in vehicle display is also expected to rise. Particularly, center information display(CID) is expected to be actively utilized, and since the size and position of the display is anticipated to change, it is necessary to research based on the users' perspective. However, there are limited research studies that investigated the user's consciousness on the size and position of autonomous vehicle display. Herein, the purpose of this study is to identify and present the preference of the center information display's size and position on each levels of driving automation. For this, an experiment on the driving simulator was conducted using the think-aloud method. As a result, it was found that the horizontal display(12.5inch) on the top position was the most preferred in the second level of the driving automation. On level three, the participants significantly preferred the vertical display(17inches) compared to the second level. This study is significant since it conducted an empirical study which examines the user' preference of CID using a driving simulator for the autonomous vehicle.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.5
/
pp.200-215
/
2023
With the rapid advance of autonomous driving technology, the related vehicle market is experiencing explosive growth, and it is anticipated that the era of fully autonomous vehicles will arrive in the near future. However, along with the development of autonomous driving technology, questions regarding its safety and reliability continue to be raised. Concerns among technology adopters are increasing due to media reports of accidents involving autonomous vehicles. To promote the improvement of the safety of autonomous vehicles, it is essential to analyze previous accident cases and identify their causes. Therefore, in this study, we aimed to analyze the factors influencing the severity of autonomous vehicle accidents using previous accident cases and related data. The data used for this research primarily comprised autonomous vehicle accident reports collected and distributed by the California Department of Motor Vehicles (CA DMV). Spatial information on accident locations and additional traffic data were also collected and utilized. Given that the primary data used in this study were accident reports, a Poisson regression analysis was conducted to model the expected number of accidents. The research results indicated that the severity of autonomous vehicle accidents increases in areas with low lighting, the presence of bicycle or bus-exclusive lanes, and a history of pedestrian and bicycle accidents. These findings are expected to serve as foundational data for the development of algorithms to enhance the safety of autonomous vehicles and promote the installation of related transportation infrastructure.
A new control method far vision-based autonomous vehicle is proposed to determine navigation direction by analyzing lane information from a camera and to navigate a vehicle. In this paper, characteristic featured data points are extracted from lane images using a lane recognition algorithm. Then the vehicle is controlled using new Levenberg-Marquardt neural network algorithm. To verify the usefulness of the algorithm, another algorithm, which utilizes the geometric relation of a camera and vehicle, is introduced. The second one involves transformation from an image coordinate to a vehicle coordinate, then steering is determined from Ackermann angle. The steering scheme using Ackermann angle is heavily depends on the correct geometric data of a vehicle and a camera. Meanwhile, the proposed neural network algorithm does not need geometric relations and it depends on the driving style of human driver. The proposed method is superior than other referenced neural network algorithms such as conjugate gradient method or gradient decent one in autonomous lateral control .
This paper describes the tracking algorithm performance evaluation for autonomous vehicle using a safety envelope based path. As the level of autonomous vehicle technologies evolves along with the development of relevant supporting modules including sensors, more advanced methodologies for path generation and tracking are needed. A safety envelope zone, designated as the obstacle free regions between the roadway edges, would be introduced and refined for further application with more detailed specifications. In this paper, the performance of the path tracking algorithm based on the generated path would be evaluated under safety envelop environment. In this process, static obstacle map for safety envelope was created using Lidar based vehicle information such as current vehicle location, speed and yaw rate that were collected under various driving setups at Seoul National University roadways. A level of safety was evaluated through CarSim simulation based on paths generated with two different references: a safety envelope based path and a GPS data based one. A better performance was observed for tracking with the safety envelop based path than that with the GPS based one.
Kim, Kyu-Beom;Jo, Hyung-Seok;Kim, Young-Jung;Min, Byung-Chan
Science of Emotion and Sensibility
/
v.23
no.2
/
pp.3-12
/
2020
The purpose of this work is to suggest the optimal color temperature, which induces a sense of comfort for autonomous vehicle users through the analysis of biosignal using electroencephalography (EEG) and photoplethysmography (PPG). To achieve this purpose, we applied lighting with a color temperature of 3000 K, 4000 K, 5000 K, and 6000 K to the autonomous driving environment. We experimented in a laboratory equipped with a graphic driving simulator. The experimental procedure is as follows: 1) stabilization (5 min). 2) Uchida-Kraepelin test (3 min). 3) Automatic driving + lighting (3 min). This procedure was repeated four times under different color temperatures. We performed frequency analysis on a collected time-series data and calculated the power value for each frequency band through power spectrum analysis. In the case of EEG, we analyzed α- and β-waves, which are indicators of stability and arousal, respectively. In the case of PPG, we analyzed the sympathetic nervous system activity. To reduce deviations between the subjects, we normalized the data before analysis. The result of the first analysis revealed that α-wave increased only at 5000 K, while the β-wave increased at almost all color temperatures. In addition, in the case of PPG, sympathetic nervous system activity (SNSA) increased under driving conditions. The result of the second analysis revealed that the difference between β-wave and SNSA is insignificant. In conclusion, the increase in α-waves showed that EEG was most stable at 5000 K. The results of this study can be applied to the upcoming autonomous driving era to induce high driver satisfaction. Furthermore, this approach could eventually lead to the acceptance of autonomous vehicles by suggesting a positive effect of autonomous driving.
The age of autonomous vehicles has come according to development of high performance sensing and artificial intelligence technologies. And importance of the vehicle's surrounding environment sensing and observation is increasing accordingly because of its stability and control efficiency. In this paper we propose an integrated platform for efficient networking, analysis and monitoring of multiple sensing data on the vehicle that are equiped with various automotive sensors such as GPS, weather radar, automotive radar, temperature and humidity sensors. From simulation results, we could see that the proposed platform could perform realtime analysis and monitoring of various sensing data that were observed from the vehicle sensors. And we expect that our system can support drivers or autonomous vehicles to recognize optimally various sudden or danger driving environments on the road.
Kim, Yujin;Moon, Jongsik;Jeong, Yonghwan;Yi, Kyongsu
Journal of Auto-vehicle Safety Association
/
v.11
no.3
/
pp.37-42
/
2019
This paper presents an autonomous acceleration planning algorithm for pedestrian collision avoidance at urban. Various scenarios between pedestrians and a vehicle are designed to maneuver the planning algorithm. To simulate the scenarios, we analyze pedestrian's behavior and identify limitations of fusion sensors, lidar and vision camera. Acceleration is optimally determined by considering TTC (Time To Collision) and pedestrian's intention. Pedestrian's crossing intention is estimated for quick control decision to minimize full-braking situation, based on their velocity and position change. Feasibility of the proposed algorithm is verified by simulations using Carsim and Simulink, and comparisons with actual driving data.
This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.
Along with the recent technological development, autonomous vehicles are being commercialized. but The accident of autonomous driving car is becoming an issue, and safety problem of autonomous driving car is becoming a hot topic. Also There are currently no specific guidelines for clear laws and security ethics. These guidelines require a lot of information and experience. This study establishes basic guidelines based on cases of accidents from past to present. This study suggests security considerations through case study of security ethics in autonomous car accident.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.