자율주행차는 GPS 및 레이더, 라이다, 카메라, IMU 등 다수의 센서가 장착되어 도심 교차로 주행 환경에서 다양한 교통체계를 인지하고 판단하여 주행하지만 장착된 센서의 감지 거리를 벗어나는 영역에 대한 예측 및 판단의 한계 등으로 자율주행차의 교차로 사고 비율은 전체 사고의 88%로 사고 비율이 높다. 따라서 ITS 도입으로 V2V, V2I를 통한 비신호 교차로 사고 회피 전략 연구가 진행되고 있을 뿐만 아니라 고장 상황에서 안전한 교차로 주행에 대한 연구도 진행되고 있지만 단순한 교차로 시나리오를 통한 검증과 단편적인 V2V 고장만을 제시하고 있다. 본 논문에서는 V2V 모듈의 아키텍쳐를 분석하여 V2V 모듈별 위험 요인을 분석하여 고장모드를 정의하였다. 또한 다양한 도로 조건 및 교통량에 따라 교차로 시나리오를 제시하여 ISO-26262 Part3 프로세스를 활용하여 HARA를 수행하여 자율주행차의 오작동에 대해 시뮬레이션 기반 위험성을 분석하여 ASIL을 제시하였다. V2V 모듈의 각 컴포넌트별 모니터링 컨셉을 제안하였고 시뮬레이션을 통해 모니터링 커버리지를 제시하였다.
International Journal of Internet, Broadcasting and Communication
/
제14권2호
/
pp.47-54
/
2022
For safe driving of autonomous vehicles, road damage detection is very important to lower the potential risk. In order to ensure safety while an autonomous vehicle is driving on the road, technology that can cope with various obstacles is required. Among them, technology that recognizes static obstacles such as poor road conditions as well as dynamic obstacles that may be encountered while driving, such as crosswalks, manholes, hollows, and speed bumps, is a priority. In this paper, we propose a method to extract similarity of images and find damaged road images using OpenCV image processing and CNN algorithm. To implement this, we trained a CNN model using 280 training datasheets and 70 test datasheets out of 350 image data. As a result of training, the object recognition processing speed and recognition speed of 100 images were tested, and the average processing speed was 45.9 ms, the average recognition speed was 66.78 ms, and the average object accuracy was 92%. In the future, it is expected that the driving safety of autonomous vehicles will be improved by using technology that detects road obstacles encountered while driving.
Due to the restriction of movement caused by the Corona epidemic and the expansion of the "big face" through human distance, the "unmanned system" based on artificial intelligence and the Internet of Things has been widely used in modern life. "Self-driving," one of the transportation systems based on artificial technology, has taken the initiative in the transportation system as the spread of Corona has begun. Self-driving technology eliminates unnecessary contact and saves time and manpower, which can significantly impact current and future transportation. Accidents may occur, however, due to the performance of self-driving technology during transportation albeit the U.S. allows ordinary people to drive automatically through experimental operations, and the product liability law will resolve the dispute. Self-driving has become popular in the U.S. after the experimental stage, and in the event of a self-driving accident, product liability should be applied to protect drivers from complicated self-driving disputes. The purpose of this paper is to investigate whether disputes caused by defects in ordinary cars can be resolved through arbitration through U.S. precedents and to investigate whether disputes caused by defects in autonomous cars can be arbitrated.
This paper presents a study of localization methods based on particle filter using 2D laser sensor measurements and road feature map information, for autonomous vehicles. In order to navigate in an urban environment, an autonomous vehicle should be able to estimate the location of the ego-vehicle with reasonable accuracy. In this study, road features such as curbs and road markings are detected to construct a grid-based feature map using 2D laser range finder measurements. Then, we describe a particle filter-based method for accurate positional estimation of the autonomous vehicle in real-time. Finally, the performance of the proposed method is verified through real road driving experiments, in comparison with accurate DGPS data as a reference.
International Journal of Computer Science & Network Security
/
제23권11호
/
pp.67-72
/
2023
In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.
Level 3 자율주행차의 상용화가 가시화됨에 따라 자율주행차의 운행설계영역(ODD)이 고속도로 외 도심도로로 확대될 필요가 있다. 본 연구는 도심도로 내 인프라-자율차 간 협력주행 기반의 자율주행차 서비스에 대한 교통운영효율성 및 안전성 측면의 효과평가를 통해 도심도로 자율협력주행 서비스의 실효성을 분석하였다. 도심도로 자율협력주행 서비스의 구현 및 효과평가는 미시교통시뮬레이션모델을 활용하였으며, 각 서비스별 중점관리목표에 따른 개별적인 효과평가 지표를 선정하여 효과 분석에 활용하였다. 분석 결과, V2X 통신 기반의 자율협력주행 서비스를 통해 자율주행차량의 교통운영 효율성과 안전성이 향상됨을 확인하였고, 그 효과는 자율주행차의 시장점유율이 증가할수록 커지는 것으로 분석되었다. 본 연구는 단속류인 도심도로를 대상으로 V2X 통신 기반의 자율협력주행 서비스의 효과를 도출해낸 것에 의의가 있으며, 향후 자율협력주행 서비스 검증 기반이 마련되는데 기초자료로 활용될 수 있을 것으로 기대된다.
현재 자율주행 차량 연구들은 긴급상황이 대처 가능한 4레벨의 자율주행 차량을 개발하기 위해 매진하고 있다. 차량이 긴급상황에 유연하게 대처하기 위해서는 피해를 최소화하는 방향으로 움직여야 하는데, 이는 주변 보행자, 도로 상태, 주변 차량의 상태 등 주행 중인 도로의 모든 상태를 판단하여 진행되어야 한다. 따라서 본 논문에서는 자율차량 내부의 탑승객 상황을 탐지하고, 그것을 V2V로 주변 차량에 공유하여 이 긴급상황에서 주행을 결정하는 데 도움을 줄 수 있는 자율차량의 주행을 보조하기 위한 탑승객 탐지 및 공유 시스템을 제안한다. 탑승객 탐지 및 공유 시스템은 현재 차량에서 탑승객을 인식하는 무게 측정 방식을 개선하여 정확하게 차량 내부의 승객 위치를 식별할 수 있고, 각 차량의 승객 위치를 주변의 다른 차량과 공유하기 때문에 긴급상황이 발생할 때 차량의 주행 결정에 도움을 줄 수 있다. 실험 결과, 탑승객 인식 서브 모듈에 적용된 체압 센서는 기존의 공진형 센서보다 약 8%, 압전형 센서보다 약 17% 높은 정확도를 보였다.
실제 환경에서는 움직이지 않는 정적 물체만큼이나 많은 수의 움직이는 동적 물체가 존재한다. 사람은 정적 물체와 동적 물체를 쉽게 구분할 수 있지만, 자율 주행 차량이나 모바일 로봇은 이를 구분하지 못한다. 따라서 차량이나 로봇이 성공적이고 안정적인 자율 주행을 수행하기 위해서는 정적 물체와 동적 물체를 정확하게 구분하는 것이 중요하다. 이를 수행하기 위해서 자율 주행 차량이나 모바일 로봇은 카메라, 라이다 등과 같은 다양한 센서 시스템을 활용할 수 있다. 그중에서 스테레오 카메라 영상은 자율 주행을 위해 많이 활용하는 데이터이다. 스테레오 카메라 영상은 물체 분할, 분류, 추적과 같은 물체 인식 분야는 물론 3차원 지도 복원과 같은 네비게이션 분야에 활용할 수 있다. 본 연구에서는 실시간으로 주행하는 차량과 로봇을 위하여 스테레오 영상을 활용한 정적/동적 물체 구분 방법을 제안하고, 향후 네비게이션 목적으로도 활용할 수 있도록 3차원 지도를 복원하여 이를 적용한 결과 및 성능 확인을 위한 정확도 분석 결과(99.81%)를 제시한다.
본 연구는 고안전도 차량의 자율주행을 위해 필수적인 장애물 차량 탐지를 위한 시스템 개발에 관한 것이다. 먼저 칼만필터를 이용해 차량에 부착된 CCD 카메라에 의해서 획득한 전방 영상으로부터 주행차선의 경계를 탐지한다. 그리고 탐지된 경계의 회귀분석을 통해 차선을 인식한다. 다음으로 주행 방향을 인식하기 위해 탐지된 차선내의 도로 굴곡 파라미터를 오류 역전파 알고리즘의 입력값으로 사용한다. 마지막으로 전방과 측방에 탐지영역을 설정함으로써 탐지영역으로 들어오는 장애물 차량을 탐지할 수 있다. 제안한 방법으로 실험한 결과 주행방향 인식과 장애물 차량의 인식 모두 90% 이상의 높은 정확도를 보였다.
최근 자율주행 자동차에 대한 관심이 높아짐에 따라 자율주행 자동차 관련 기술 개발에 대한 활발한 연구가 진행되고 있다. 이에 따라 자율주행 환경에서의 운전자 관점에 대한 연구도 조금씩 늘어나고 있는 추세이다. 그러나 일부 연구들은 자율주행 자동차에 대한 낙관적인 입장만을 보이고 있다. 하지만, 선행 연구에서는 실제 자율주행 자동차를 태우지 않았다는 한계가 있다. 따라서, 본 연구에서는 자율주행 자동차를 기반으로 인간과 차량 간 상호작용을 알아보고자 에스노그라피 접근을 통한 질적 연구를 진행하였다. 그 결과, 자율주행 환경에서 운전자의 경험에 영향을 미치는 8개의 불신 요소를 도출하였다. 결과적으로 본 연구는 기존 신뢰 모형을 통해 자율주행 맥락에 적용하여 확장하였다는 점과 결과를 바탕으로 자율주행 환경에서 불신을 낮추고 신뢰를 높여줄 디자인 가이드를 제시했다는 점에서 이론적 및 실용적 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.