• 제목/요약/키워드: Automotive wheel

검색결과 426건 처리시간 0.026초

자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향 (Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel)

  • 송전영;박중철;안용식
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

4륜 조향시스템이 차량의 주행역학적 특성에 미치는 영향 (Effect of four-wheel steering system on vehicle handling characterisitcs)

  • 심정수;허승진;유영면
    • 오토저널
    • /
    • 제12권3호
    • /
    • pp.21-29
    • /
    • 1990
  • Equipments of passenger cars with modern technologies are gaining their importance. Related with such developments, the four-wheel steering system (4WS) was introduced recently to a few passenger cars in the market. The most important research goal on this new steering system is improvement of active safety, in other words, improvement of handling characteristics of vehicle stability and maneuverability. This paper presents a computer-based study about the effects of 4WS system on the vehicle handling characteristics. A simple bicycle model of 2 d.o.f. is used for the development of four wheel control algorithms of 4WS system, and the rear wheel control strategies are applied to a complex vehicle model of 16 d.o.f. for simulation of selected ISO-driving tests. The 4WS systems, which reduce the sideslip angle at the mass center of vehicle to almost zero, show much improved handling characteristics compared to that of the conventional 2WS system. These 4WS systems, however, result in vehicles with eigen-steer characteristics of extreme understeer behaviour.

  • PDF

운전자-자동차모델을 이용한 4륜조향자동차의 주행특성 해석 (Dynamic Characteristics Analysis of a Four-Wheel Steering Vehicle Using a Driver-Vehicle Model)

  • 이영화;김석일;서명원;김대영;김동룡
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.119-128
    • /
    • 1995
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. Especially, the presented analysis results are obtained by using the ISO test codes such as lane change, double lane change and slalom, and the effects of the driver's steering response time and vehicle speed are examined on the responsiveness and stability of vehicle.

  • PDF

휠 차량의 내구 시험장 조성을 위한 매개변수 연구 (A Parametric Study for the Construction of Durability Test Track of a Wheel Type Vehicle)

  • 송세철;김형근;박태건;김동준
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.73-79
    • /
    • 1998
  • For the design and development of the wheel type excavator, the dynamic effects of travelling on the performance of the equipment should be first analyzed and conside- red in the initial design stage. In order to test the durability of the equipment in a short period, th travelling test should be performed over accelerated durability test tracks. which is more severe than general field roads such as city road, paved road, unpaved road and rough road. In this paper, a parametric study is performed in order to determine important design parameters of durability test track of a wheel type excavator. A rigid body model is developed using DADS and dynamic analysis is performed for the equipment travelling over several test roads with different severity. A comparison of test and analysis results is also presented.

  • PDF

승용차의 single wheel에 대한 antilocking-brake-system의 구성 및 test rig을 이용한 제동실험 (Set up of an antilocking-brake-system for the single wheel of passenger cars and brake test using a test rig)

  • 홍예선;지태수;고창복
    • 오토저널
    • /
    • 제12권5호
    • /
    • pp.36-45
    • /
    • 1990
  • In this study an antilocking-brake-system was set up for the single wheel of passenger cars. The control algorithm for the system was programmed by C-language and executed by a 16bit personal computer, which took the role of an electronic control unit. The performance of the antilocking-brake-system was tested using a test rig, which was specially designed and built up for the simulation of braking on the slippery road. The test results were satisfactory. Although the simulation method of the friction characteristics between the tire and the contact surface on the test rig appeared not to be absolutely suitable, the test rig allowed the basic investigation of the influence of the antilocking brake control on the wheel slip.

  • PDF

다구찌 방법을 이용한 휠 베어링 유니트의 형상설계 (Design of a Wheel Bearing Unit Using Taguchi Method)

  • 안태길;이상훈
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.164-168
    • /
    • 2003
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, operating temperature, loading conditions, bearing geometry, the internal clearance of bearing and so on. In this paper, we analyze the relation between loads and deformations of wheel bearing units for optimal bearing unit design. On the basis of it, we calculate the endurance life of w heel bearing units and analyze the contribution of bearing geometric parameters on the endurance life by using Taguchi method.

핸들조향속도를 고려한 4WS 제어방법에 관한 연구 (A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity)

  • 이영화;김석일;김대영;김동룡
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

후륜 캠버각 변화가 차량 조종성능에 미치는 효과 분석 (Analysis of Vehicle Handling Performance due to Camber Angle Change of Rear Wheel)

  • 박성준;손정현
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.67-73
    • /
    • 2010
  • In this study, a camber angle generating mechanism for rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Rear left wheel and rear right wheel have 5 different camber angles in the simulations, respectively. Step steer and pulse steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle control of rear suspension. According to the results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel should have the proper orientation for improving the handling performance, respectively.

능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구 (A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.

CONTROL PHILOSOPHY AND ROBUSTNESS OF ELECTRONIC STABILITY PROGRAM FOR THE ENHANCEMENT OF VEHICLE STABILITY

  • Kim, D.S.;Hwang, I.Y.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.201-208
    • /
    • 2006
  • This paper describes the control philosophy of ESP(Electronic Stability Program) which consists of the stability control the fault diagnosis and the fault tolerant control. Besides the functional performance of the stability control, robustness of control and fault diagnosis is focused to avoid the unnecessary activation of the controller. The look-up tables are mentioned to have the accurate target yaw rate of the vehicle and obtained from vehicle tests for the whole operation range of the steering wheel angle and the vehicle speed. The wheel slip control with a design goal of wheel slip invariance is implemented for the yaw compensation and the target wheel slip is determined by difference between the target yaw rate and actual yaw rate. Since the ESP has a high severity level and the robust control is required, the robustness margin for the stability control is determined according to several uncertainties and the robust fault diagnosis is performed. Both computer simulation and test results are shown in this paper.