• Title/Summary/Keyword: Automotive wheel

Search Result 426, Processing Time 0.022 seconds

A Study on the Analysis of Design Parameters for Development of LSD (다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구)

  • Shin, Young-Ho;Lee, Dong-Won;Shin, Chun-Se
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

A Study on the Design of Propeller Shaft for Reduction of Torsional Vibration (비틀림짙동 저감을 위한 추진축 설계에 관한 연구)

  • 최은오;안병민;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.221-228
    • /
    • 1999
  • A full-time four wheel drive vehicle is driven literally full time by the front and the rear wheels. Front and rear drive shafts are rotated rapidly in the extremely torsional state, which can cause various vibration and noise problems. The purpose of this study is to reduce the vibration and the noise of the full -time four wheel drive vehicle. In this paper, both the causes and the methods for reduction of torsional vibration are suggested. For this study, the characteristics of the torsional vibration are analyzed by free and forced torsional vibration simulation. And this paper described the influence upon the torsional vibration with emphasis shafting system. The validity of simulation models is checked by the field test. The forced vibration simulation with the variations of shaft design factors are performed by the checked models. According to the simulation , the resonance region shifts and the torque fluctuation varies in the system,. Finally, the methods and the effects for the torsional vibration reduction in driveline are proposed.

  • PDF

A Study on Sensor Module and Diagnosis of Automobile Wheel Bearing Failure Prediction (차량용 휠 베어링의 결함 예측을 위한 센서 모듈 및 진단 연구)

  • Hwang, Jae-Yong;Seol, Ye-In
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.47-53
    • /
    • 2020
  • There is a need for a system that provides early warning of presence and type of failure of automobile wheel bearings through the application of predictive fault analysis technologies. In this paper, we presented a sensor module mounted on a wheel bearing and a diagnostic system that collects, stores and analyzes vehicle acceleration information and vibration information from the sensor module. The developed sensor module and predictive analysis system was tested and evaluated thorough excitation test equipment and real automotive vehicle to prove the effectiveness.

An Optimal Design of the Front Wheel Drive Engine Mount System (전륜구동형 승용차의 엔진마운트 시스템 최적설계)

  • Kim, M.S.;Kim, H.S.;Choi, D.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

A Study on Wheelchair Occupant Injury in Wheelchair Accessible Vehicle by the Sled Test (충돌모의(Sled) 시험에 의한 특별교통수단 휠체어 탑승자 상해에 관한 연구)

  • Kim, Taeyong;Shim, Sojung;Kim, Siwoo;Kang, Byungdo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.140-148
    • /
    • 2017
  • Accidents involving wheelchair accessible vehicles have been frequently occurring since the introduction of these vehicles in the Korean market. However, detailed regulations, which are required to ensure the safety of the wheel-chair occupants, are unavailable. In this study, both domestic and international vehicle safety regulations are analyzed in order to select the regulations that are similar to the transportation environment of Korea. Sled tests with an actual wheel-chair accessible vehicle were carried out based on the analyzed regulation requirements, as well as the values of the HIC, belt loads, dummy movements, and wheelchair movements. The test results showed that the movements of the dummy and the wheelchair did not meet the criteria of the regulation due to the improper positioning of the restraint systems.

A Study on the Application of Laminated Grinding Wheel to Surface Grinding Operation (적층 연삭 숫돌의 평면 연삭 공정 적용에 관한 연구)

  • Guak, Chol-Hoon;Lee, Eun-jong;Kim, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.45-52
    • /
    • 2000
  • To reduce two preprocess operations to one in the surface grinding operation the laminated grinding wheel was introduced and its availability has already been investigated in the cylindrical grinding process. Thus in this study the experiment was carried out to attempt to prove that the laminated grinding wheel can be used in the surface grinding process with respect to the roughness and grinding force.

  • PDF

Inspection of Diamond Wheel through Boundary Detection and Processing (경계 추출 및 처리를 통한 다이아몬드 휠 검사)

  • Ha, Jong-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.932-936
    • /
    • 2016
  • In this paper, we present a method for the inspection of diamond wheels. In total, six items, including height, radius, and angle, need to be checked during the manufacturing of a diamond wheel. Automatic inspection through image processing is presented in this paper. First, a contour corresponding to the boundary of the diamond wheel is extracted from an image. Next, control points are selected by processing the contour. Seven control points are detected and used for the computation of the required item. Detailed procedures for the computation of the height, radius, and angle using control points are presented in this paper. Experimental results show the feasibility of the presented method.

Development of Auxiliary Wheel Unit Mechanism for Overcoming Obstacles

  • Han, Jae-Oh;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.30-38
    • /
    • 2019
  • Recently, the spread of personal mobility has been rapidly increasing due to the development of environmentally friendly alternative transportation means. In addition, the level of battery technology is also rapidly developing, accelerating the popularization of personal mobility. Such personal mobility has convenience of location transfer, amusement, and high portability compared to other transportation devices. Most personal mobility, however, is made up of small wheels, which cannot overcome obstacles such as rugged roads or obstacles on the road. In this paper, to solve these problems, we tried to devise a device that can easily overcome obstacles by combining wheels with small moving means. The wheel size can be mounted on the front wheel of the small moving means in a protruding manner so that obstacles can be encountered before the front wheels and the safety and ride comfort of the running can be improved.

Control Logic Using Torque Map for a Column-Type Electric Power Steering System (토크맵을 이용한 칼럼형 전기식 동력조향 시스템의 제어로직)

  • 김지훈;송재복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.186-193
    • /
    • 2000
  • EPS(Electric Power Steering) systems have many advantages over traditional hydraulic power steering systems in space efficiency engine efficiency and environmental compatibility. In this paper an EPS system control logic using a torque map is proposed. The main function of the EPS system is to reduce the steering torque exerted by a driver by assist of an electric motor. Vehcile speed steering torque and steering wheel angle are measured and fed back to the EPS control system where appropriate assist torque is generated to assist the operator's steering effort. Another capability of the EPS system for easy adaptation to different steering feels via simple tuning is demonstrated by the experiments. It will be also verified that the EPS system can also improve damping and return performance of the steering wheel by control of the assist motor.

  • PDF

Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles (폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF