• Title/Summary/Keyword: Automotive sensor

Search Result 507, Processing Time 0.028 seconds

Coreless Hall Current Sensor for Automotive Inverters Decoupling Cross-coupled Field

  • Kim, Ho-Gi;Kang, Gu-Bae;Nam, Dong-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2009
  • Automotive inverters may require current sensors for motor torque control, especially, in applications of hybrid electric vehicles or fuel cell vehicles. In this paper, to achieve a compact, integrated and low cost current sensor, a hall current sensor without magnetic core is introduced for integrating an automotive inverter. The compactness of the current sensor is possible by using integrated magnetic concentrators based on the Hall effect. Magnetic fields caused by three-phase currents are analyzed and a magnetic shield design is proposed for decoupling the cross-coupled field. It offers galvanic isolation, wide bandwidth (>100kHz), and accuracy(< 1%). Using 2D FEM analysis, its performance is demonstrated with design parameters at a U-shaped magnetic shield. The proposed coreless current sensor is tested with rated current to validate the linearity and accuracy.

Development of the Non-contacted Gear Detection Sensor for a Manual Transmission (수동변속기용 비접촉식 변속단 감지센서 개발)

  • Han, Chang-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • The present paper relates to a development of the Gear Detection Sensor for automotive manual transmission. To detect air gap from control finger to detecting zone of sensor based on non-contacted method, permanent magnet and linear type Hall IC are mounted in this sensor. Control finger is machined to 3 step heights to detect 3 gear stages such as In-Gear, Normal and Rear. After conducting actual experimentation based on exclusive Jig and FEM, it is described to consider possibility for automotive application of Gear Detection Sensor.

Detecting the Remaining Kids in a School Bus and Designing a Warning System based on an Ultrasonic Sensor (초음파 센서 기반 통학 차량에 남겨진 유아 감지 및 경고 시스템 설계에 관한 연구)

  • Kim, Jeong-Jae;Mun, Tae-Eun;Park, Hun-Min;Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2018
  • In this paper, a detection and warning system is proposed for the remaining kids in a school bus. For detecting the remaining kids, an ultrasonic sensor is used. The basic experiments of the ultrasonic sensor are performed, and a modified ultrasonic sensor is proposed. Also, the appropriate location of the ultrasonic sensor is proposed by considering various sitting positions. Based on the above kid detection system, a warning algorithm is designed. Using the above detection and warning system, experiments are performed. From the experimental results, it is found that the proposed system, based on the modified ultrasonic sensor, can detect the remaining kids in a school bus. The proposed system can also give an appropriate warning signal.

A Study of Aging of Oxygen Sensor (II) (산소센서의 열환에 관한 연구 (II))

  • 손건석;윤승원;고성혁;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Oxygen sensor taken from the aftertreatment systems of 4 vehicles which had been aged in domestic field examined for aging effects on emissions using a idel engine bench. also the artificial sensor signal generated by function generator was supplied to ECU, instead of oxygen sensor to simulate aging effects of oxygen sensor. This study shows that reduction of amplitude, deformation and shift of mean value of aged sensors seriously affect on the engine out emissions and the performance of TWC.

  • PDF

An Evaporative System Monitoring Method Using a Virtual HC Sensor (가상 HC 센서를 이용한 Evaporative System Monitoring 방법에 대한 연구)

  • 서진호;박재홍;윤형진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2003
  • This paper presents a new evaporative system monitoring method using a virtual HC sensor for an automotive on-board diagnosis. A development was made at providing mathematical expressions from the lambda control information to estimate the HC mass flow purged into the intake manifold from the canister for implementing a virtual HC sensor. The change of the lambda averagevalue reflected the influence of the additional fuel from purging results the sensor estimation of the purged HC amount. Based on this virtual HC sensor, a new evaporative system monitoring method was proposed comparing the amount of purged HC amount with the amount of the HC gas evaporated from the fuel tank and absorbed into the canister. Finally, the method was validated with a simulation using the data logged from the retail car.

Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes (운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템)

  • Kwon, Yeong-Eun;Kim, Yun-Young;Lee, Yong-Goo;Lee, Dongkyu;Kwon, Ohwon;Kang, Shin-Won;Lee, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

Analysis of Conductivity Gas by using Automotive Dynamo-Meter (차량용 Dynamo-Meter를 이용한 도전성가스 분석연구)

  • 전영갑;서길수;노형우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.112-118
    • /
    • 2001
  • In this study the leakage current measurement method based on a porous ceramic is applied to check the conductive substance caused by the ionized particles. By using engine and chassis dynamometer and an experiment vehicle, in which the hydrocarbon sensor (HC sensor) was exposed to the exhaust gas to create the electrical signal, the HC sensor in the exhaust line checked the conductive ions in emission gas. Generally the output electrical signal of HC sensor is followed with amount of hydrocarbon in the experiments in cold start and operation. By combining the electrical signal, a measure of conductivity of exhaust gas with hydrocarbon can be provided by OBD (On Board Diagnosis) II and EMS (Engine Management System).

  • PDF

Active Vibration Control of An Automotive Roof using Piezoelectric Sensor and Actuator (압전재료 센서 액츄에이터를 이용한 자동차루프의 능동진동제어)

  • Moon, Sung-Jin;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.834-839
    • /
    • 2004
  • In this paper, we have studied on the active vibration control of an automotive roof in passenger car's structure using piezoelectric material as the actuator and sensor attached on the surface of the automotive roof, As a control algorithm, negative velocity feedback control method is used in the study and the position of the sensor is almost attached on the nearest position of maximum normal stresses occurring while the roof is vibrating due to disturbance or exciting, Also, the actuator is attached on the other side mostly collocated to the sensor. The optimum positions have the maximum stresses of the roof which have been found in the result of the finite element analysis using Nastran software, As the fundamental experiments, a beam and plate have also been implemented to verify the performance of vibration suppression. Finally the experiment of the roof has been carried out and The roof experiment has just given a possibility to an active vibration control of the automotive structure still not applied for passenger cars.

  • PDF

Climbing Angle Estimation in Yawing Motion by UIO (UIO를 이용한 선회 시 등판각 추정)

  • Byeon, Hyeongkyu;Kim, Hyunkyu;Kim, Inkeun;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.478-485
    • /
    • 2015
  • Availability of the climbing angle information is crucial for the intelligent vehicle system. However, the climbing angle information can't be measured with the sensor mounted on the vehicle. In this paper, climbing angle estimation system is proposed. First, longitudinal acceleration obtained from gyro-sensor is compared with the actual longitudinal acceleration of the vehicle. If the vehicle is in yawing motion, actual longitudinal acceleration can't be approximated from time derivative of wheel speed, because lateral velocity and yaw rate affect actual longitudinal acceleration. Wheel speed and yaw rate can be obtained from the sensors mounted on the vehicle, but lateral velocity can't be measured from the sensor. Therefore, lateral velocity is estimated using unknown input observer with nonlinear tire model. Simulation results show that the compensated results using lateral velocity and yaw rate show better performance than uncompensated results.

Reliability Assessment Criteria of Differential Pressure Sensor for DPF (자동차용 DPF 차압센서의 신뢰성 평가기준)

  • Chung, Wooyoung;Min, Joonwon;Park, Dongkyu;Choi, Jungwoon;Choi, Wooseok;Kim, Sidong
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.67-75
    • /
    • 2015
  • Differential pressure sensor for DPF (Diesel Particulate Filter) is the important part of a automobile exhaust system. This device measures the pressure of before DOC and after DPF to determine whether the DPF regenerate. In this paper reliability assessment criteria for DPF differential pressure sensor are established on terms of quality calcification test and lifetime test. The former quality certification test comprises general performance test and environmental test. Items which pass the test undergo lifetime test which guarantees the extent of mean lifetime with certain confidence.