• Title/Summary/Keyword: Automotive parts

Search Result 1,138, Processing Time 0.025 seconds

Structural Strength Analysis of ATV Knuckle (ATV 너클의 구조강도 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • This study analyzes structural analysis with fatigue and natural frequency on ATV knuckle. The maximum equivalent stresses are happened at the end of knuckle in case of model 1, 2 and 3. As these stresses are below the allowable stress, these models can be stable structurally. The fatigue damage possibility at model 1 becomes more than model 2 and 3. Model 2 or 3 has more durability than model 1 at fatigue. As the resonances are happened at the frequency more than 2000 Hz in case of model 1, 2 and 3, there is no resonance possibilities at real driving. Prevention against damage and durability prediction on automotive chassis parts can be effectively improved by applying this study result on knuckle and improving structural strength.

DEVELOPMENT OF AN ACCELERATED LIFE TEST PROCEDURE FOR COOLING FAN MOTORS

  • Shin, W.G.;Lee, S.H.;Song, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.757-762
    • /
    • 2006
  • Reliability of automotive parts has been one of the most interesting fields in the automotive industry. Especially, a small DC motor was issued because of the increasing adoption for passengers' safety and convenience. For several years, small DC motors have been studied and some problems of a life test method were found out. The field condition was not considered enough in the old life test method. It also needed a lot of test time. For precise life estimation and accelerated life test, new life test procedure was developed based on measured field condition. The vibration condition on vehicle and latent force on fan motor shaft were measured and correlated with each other. We converted the acceleration data into the load data and calculated the equivalent load from integrated value. We found the relationship which can be used for accelerated life test without changing the severity by using different loading factors.

Structural Design of an Automotive Door Using the Kriging Models (크리깅모델을 이용한 자동차 도어의 구조설계)

  • Lee, Kwon-Hee;Bang, Il-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.146-153
    • /
    • 2007
  • Weight reduction for automobile components has been sought to achieve fuel efficiency and energy conservation. There are two approaches in reducing their weights. One is by using material lighter than steel, and the other is by redesigning their structures. The latter has been performed by adopting hydroforming, tailor weled blank, optimization, etc. In this research, the kriging approximation method and simulated annealing algorithm are applied to the design of a front door made by TWB (Tailor Welded Blank) technology. The design variables are set up as the thicknesses of parts and the positions of parting lines. A thickness set considered as a design variable of each part is not arbitrarily determined but selected from standard products, so it is a discrete set. This research presents the discrete and continuous structural optimization method for an automotive door design.

Design Optimization of an Automotive Injection Molded Part for Minimizing Injection Pressure and Preventing Weldlines (사출압력 최소화와 웰드라인 방지를 위한 자동차용 사출성형 부품의 최적설계)

  • Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon;Koo, Man-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2011
  • Injection pressure is an important factor in filling procedure for injection molded parts. In addition, weldlines should be avoided to successfully produce injection molded parts. In this study, we optimally obtained injection molding process parameters that minimize injection pressure. Then, we determined the thickness of the part to avoid weldlines. To solve the optimization problem proposed, we employed MAPS-3D (Mold Analysis and Plastics Solution-3 Dimension), a commercial CAE tool for injection molding analysis, and PIAnO (Process Integration, Automation, and Optimization) as a commercial PIDO (Process Integration and Design Optimization) tool. We integrated MAPS-3D into PIAnO, automated the analysis and design procedure, and performed optimization by employing PQRSM (Progressive Quadratic Response Surface Method) equipped in PIAnO. We successfully obtained optimization results, which demonstrates the effectiveness of our design method.

A Study on the Magnetic Field Analysis and Optimal Core Design of DC Current Sensor for Vehicles (자동차용 DC Current Sensor의 자장해석 및 코어 최적형상 설계에 관한 연구)

  • Lee, Hee-Sung;Park, Jong-Min;Kim, Choon-Sik;Kim, Sung-Gaun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.74-83
    • /
    • 2009
  • Recently, usage of electric and electronic system for car increases rapidly. Consequently power monitoring supplied to the system is essential for management and controlling. Generally, battery status is monitored through measuring and diagnosing the current measurement method utilizing Hall Effect. Therefore, in this paper, we analysed magnetic field to develop the solution of DC current sensor using Hall Effect which is the core of design and development. By analysing the magnetic field by FEM using Maxwell 3D software, the location of the highest output current and stable part in the Hall IC sensor was shown. Also, the optimal core design of DC current sensor using parametric and Simplex method was presented. A car battery charge and discharge process dependant on time effect on the changing of magnetic field was simulated and compared to the result from the experiment result of actual vehicle.

Development of a Roll-Forming Process of Linearly Variable Symmetric Hat-type Cross-section (좌우 대칭 모자형 단면이 길이 방향으로 선형적으로 변하는 롤 포밍 공정의 개발)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.118-125
    • /
    • 2015
  • The roll-forming process is a highly productive incremental forming process and is suitable for manufacturing thin, high-strength steel products. Recently, this process has been considered one of the most productive processes in manufacturing high-strength steel automotive structural parts. However, it is very difficult to develop the roll-forming process when the cross-sectional shape of the product changes in the longitudinal direction. In this study, a roll-forming process for manufacturing high-strength steel automotive parts with a linearly variable symmetric hat-type cross-section was developed. The forming rolls were designed by the 3D CAD system, CATIA. Additionally, the designed forming rolls were modified by the simulation through the 3D elastic-plastic finite element analysis software, MARC. The results of the finite element analysis show that the final roll-forming roll can successfully produce the desired high-strength steel automotive part with a variable cross-section.

Selection Attributes and Trends of Thermoplastic Elastomers for Automobile Parts

  • Kim, Seongkyun;Park, Joon Chul;Jo, Mi Young;Park, Jun Il;Bae, Jae Yeong;Choi, Seok Jin;Kim, Il
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.48-58
    • /
    • 2017
  • Thermoplastic elastomers (TPEs), a unique class of polymers, combine the processing ease of thermoplastics with the advanced properties of thermoset rubbers. TPEs can be remelted several times without any significant loss of properties, and can be molded into complex shapes using conventional processing equipment. Due to their characteristics, TPEs are ideal for use in a variety of applications in the automotive field. Although the TPE market of the Republic of Korea is currently at its niche, the increasing manufacturing push from major companies is expected to open up multiple opportunities for these products in the automotive sector. This manuscript highlights a detailed technological trend of the global automotive thermoplastic elastomers market.

Optimization of Spheroidizing Annealing Conditions in SM45C Steel (SM45C강의 구상화 어닐링조건 최적화 연구)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2006
  • The effects of eight types of spheroidizing annealing conditions including annealing temperature, annealing time, cooling rate, and gas atmosphere in the annealing furnace on the microstructure were determined in SM45C steel which has been widely used for automotive parts. The well-developed spheroidized structure and minimum hardness were obtained when the steel was heat-treated 6 hours at $740^{\circ}C$, cooled to $710^{\circ}C$ at a cooling rate of $24^{\circ}C/h$, and then kept for 7 hours at the $710^{\circ}C$ followed by air cooling. In order to increase the productivity and to save the manufacturing cost, it is desirable to apply a faster cooling rate in the spheroidizing annealing. It was found that air cooling was the fastest cooling rate applicable to the SM45C steel. The steel heat treated in air showed the decarburized layer of about $110{\mu}m$ in thickness at the surface of the specimen, resulting in serious problems in the quality of the quenched product.

Crush FE Analysis of Front Side Assembly of Passenger Cars for Identifying the Roles of Major Parts Influencing on Collapse Mode with Reverse Engineering (승용차 프론트 사이드 조립체 부품의 역할과 붕괴모드에 관한 역설계적 유한요소 충돌해석)

  • Kim, Yong-Woo;Kim, Jeong-Ho;Jeong, Kyung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.33-40
    • /
    • 2007
  • Crashworthiness design is of special interest in automotive industry and in the transportation safety field to ensure the vehicle structural integrity and more importantly the occupant safety in the event of the crash. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on auto-makers and size of vehicles. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of passenger cars to identify the mechanical roles of major parts in relation to collapse modes from the viewpoint of reverse engineering. To do this, we have performed crash FE analysis for the two different assemblies of small car and heavy passenger car and have compared dynamic behaviors of the two.

A Study on Couplant Medium Improvement for Ultrasonic Inspection System with Water Immersion to Detect Weld Defects (용접결함 검사용 수침식초음파탐상기의 매질개선연구)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Yong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.8-14
    • /
    • 2008
  • For nondestructive inspection of electron beam (EB) welding part in automotive power transmission assembly, a pulse-echo ultrasonic testing apparatus in water immersion has been applied using the ultrasonic waves with a frequency of 10MHz. However various problems have appeared during the ultrasonic inspection, which led to some significant mistakes in automatic quality evaluation of the welding parts. Experimental study showed that the state of water couplant medium containing some amount of contaminants, rusts and anti-corrosion agents had considerable influences on the reduction of ultrasonic amplitudes during wave propagation. The amplitude reduction depending on the coupling medium state could bring about some mis-diagnoses for defects in the welding parts. The results proposed that for a reliable inspection of defects in welds the state of water medium should be kept in about 15 volume fractions (vol.%) of anti-corrosion agents and in minimized contaminants.