• Title/Summary/Keyword: Automotive noise

Search Result 672, Processing Time 0.023 seconds

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method

  • Caesarendra, W.;Park, J.H.;Choi, B.H.;Kosasih, P.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.388-393
    • /
    • 2012
  • Vibration condition monitoring at low rotational speeds is still a challenge. Acoustic emission (AE) is the most used technique when dealing with low speed bearings. At low rotational speeds, the energy induced from surface contact between raceway and rolling elements is very weak and sometimes buried by interference frequencies. This kind of issue is difficult to solve using vibration monitoring. Therefore some researchers utilize artificial damage on inner race or outer race to simplify the case. This paper presents vibration signal analysis of low speed slewing bearings running at a low rotational speed of 15 rpm. The natural damage data from industrial practice is used. The fault frequencies of bearings are difficult to identify using a power spectrum. Therefore the relatively improved method of empirical mode decomposition (EMD), ensemble EMD (EEMD) is employed. The result is can detect the fault frequencies when the FFT fail to do it.

  • PDF

Dynamic Modeling and Control of Directional Control Valve Using Piezostack Actuator (압전 작동기를 이용한 방향 제어 밸브의 동적 모델링 및 제어)

  • Jeon, Juncheol;Han, Young-Min;Nguyen, Quoc Hung;Han, Seung-Hun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.331-336
    • /
    • 2012
  • This paper proposes a new type of high-frequency directional valve controlled by the piezostack actuator associated with displacement amplifier. As a first step, a dynamic model of directional valve which can operate at 200 Hz with a flow rate of 12 l/min is derived by considering pressure drop and flow force. As a second step, an appropriate piezostack is selected by considering actuation force as well as field-dependent displacement. Subsequently, in order to control spool displacement and flow rate a proportional-derivative (PD) controller is designed based on the $3^{rd}$-order valve system. Control performances such as sinusoidal trajectory tracking of the spool displacement in time domain are evaluated. In addition, the field-dependent flow rate is also presented to verify the required performance of the valve system.

  • PDF

Case Study for Pitting of Elevator's Worm Gear Type Traction Machine (승강기용 웜기어 방식 권상기의 점식 발생 사례)

  • Seo, Sang-Yoon;Choi, Byeong-Keun;Yang, Bo-Suk;Lee, Seon-Sun;Kim, Sung-Hyeob
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1064-1070
    • /
    • 2012
  • This paper analyzes the pitting's cause of elevator's worm gear type traction machine. To find a cause of pitting problem, we analyzed vibration, a proper design allowance and lubrication. We brought a conclusion that the cause of pitting is not a simple vibration problem, such as misalignment of worm reducer and rail, but mostly related to a designed allowance. In this case, the allowance is tight. In general, the allowance of traction machine and lubrication is varied by manufacturers. When the allowance is tight, a proper lubrication can diminish the pitting problem.

Sound Quality Evaluation of Turn-signal of a Passenger Vehicle based on Brain Signal (뇌파 측정을 이용한 차량 깜빡이 소리의 음질 평가)

  • Shin, Tae-Jin;Lee, Young-Jun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1137-1143
    • /
    • 2012
  • This paper presents the correlation between psychological and physiological acoustics for the automotive sound. The research purpose of this paper is to evaluate the sound quality of turn-signal sound of a passenger car based EEG signal. The previous method for the objective evaluation of sound quality is to use sound metrics based on psychological acoustics. This method uses not only psychological acoustics but also physiological acoustics. For this work, the sounds of 7 premium passenger cars are recorded and evaluated subjectively by 30 persons. The correlation between this subjective rating and sound metrics is calculated based on psychological acoustics. Finally the correlation between the subjective rating and the EEG signal measured on the brain is also calculated. Throughout these results the new evaluation system for the sound quality on interior sound of a passenger car has been developed based on bio-signal.

Active Vibration Control of Automotive Engine Mount Using MR Fluid and Piezostack (MR 유체와 압전 작동기를 이용한 자동차 엔진 마운트의 능동진동제어)

  • Choi, Sang-Min;Nguyen, Vien-Quoc;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1150-1156
    • /
    • 2008
  • This paper presents vibration control of an active hybrid engine mount featuring a magneto-rheological(MR) fluid and a piezostack actuator. The MR fluid is adopted to improve isolation performance at resonant frequencies, while the piezostack actuator is adopted for performance improvement at non-resonant frequencies, especially at high frequencies. Based on some particular practical requirements of engine mounts, the proposed mount is designed and manufactured. The characteristics of rubber element, piezostack actuator and MR fluid are verified for system analysis and controller synthesis. The dynamic model of the proposed mount with a supported mass (engine) is established. In this work, a sliding mode controller is synthesized for the mount system to reduce vibrations transmitted from the engine in a wide frequency range. Computer simulations are performed to evaluate control performances of the proposed active engine mount in time and frequency domains.

Dynamic Modeling and Control of Directional Control Valve Using Piezostack Actuator (압전 작동기를 이용한 방향 제어 밸브의 동적 모델링 및 제어)

  • Jeon, Jun-Cheol;Han, Young-Min;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.1020-1026
    • /
    • 2012
  • This paper proposes a new type of high-frequency directional valve controlled by the piezostack actuator associated with displacement amplifier. As a first step, a dynamic model of directional valve which can operate at 200 Hz with a flow rate of 12 litter/min is derived by considering pressure drop and flow force. As a second step, an appropriate piezostack is selected by considering actuation force as well as field-dependent displacement. Subsequently, in order to control spool displacement and flow rate a proportional-derivative(PD) controller is designed based on the 3rd-order valve system. Control performances such as sinusoidal trajectory tracking of the spool displacement in time domain are evaluated. In addition, the field-dependent flow rate is also presented to verify the required performance of the valve system.

Disturbance Observer Based Sliding Mode Control for Link of Manipulator Driven by Elastic Cable (탄성 케이블로 구동되는 조작기 링크의 외란 관측기 기반 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.949-958
    • /
    • 2012
  • Position tracking control of a link of a slave manipulator which needed to track the corresponding link of a master manipulator was addressed in this paper. Since driving torque from motor is transmitted through a set of flexible cable to link, the motion control system is modeled by a two-mass model connected with elastic coupling which has finite stiffness. Relative vibration of two-mass resonant system is a serious problem to operate manipulator. This paper proposed sliding mode control to reduce resonant vibration and fine position tracking control. Also, a pseudo-sliding mode control which uses a saturation function instead of a signum function was discussed and showed that the pseudo-sliding mode control can improve disturbance regulation performance as well as guarantees fine command tracking without chattering which is an inherent drawback of basic sliding mode control. In addition, a disturbance observer based sliding mode control has been suggested to improve disturbance regulation performance. The feasibility of the proposed control design was verified along with some simulation results.

Performance Evaluation of Driver Supportive System with Haptic Cue Gear-shifting Function Considering Vehicle Model (차량모델을 고려한 햅틱 큐 기어변속보조 시스템의 성능평가)

  • Han, Young-Min;Sung, Rockhoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • This paper proposes a driver supportive device with haptic cue function which can transmit optimal gear shifting timing to a driver without requiring the driver's visual attention. Its performance is evaluated under vehicle model considering automotive engine, transmission and vehicle body. In order to achieve this goal, a torque feedback device is devised and manufactured by adopting the MR (magnetorheological) fluid and clutch mechanism. The manufactured MR clutch is then integrated with the accelerator pedal to construct the proposed haptic cue device. A virtual vehicle emulating a four-cylinder four-stroke engine, manual transmission system of a passenger vehicle and vehicle body is constructed and communicated with the manufactured haptic cue device. Control performances including torque tracking and fuel efficiency are experimentally evaluated via a simple feed-forward control algorithm.

Humanity and Automotive (인간과 자동차)

  • Choi, Seibum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.870-870
    • /
    • 2013
  • 운송수단은 시대별로 요구되는 성능과 기술 수준 그리고 사용 가능한 에너지의 형태에 따라서 변화되어 왔습니다. 1900년대 초 전기자동차의 고질적인 제한적 운행 거리 문제는 내연기관의 발명으로 인해서 쉽게 해결되었다. 이 후 내연기관의 급속한 보급과 도심 과밀화로 인해서 공해 문제가 대두되었는데, 공해 문제 역시 배기 가스 환원 촉매의 발달과 자동차 전자 제어 기술의 발달로 대부분 해결된 상태이다. 최근에는 사용 가능한 화석에너지의 절대량 측면에서 하나의 커다란 시대적 전환점에 서게 되었다. 즉 아직도 사용 가능한 석유의 절대적인 양적 측면에서는 적당한 공급이 이루어지고 있으나 그 가격 면에서는 급격한 상승이 이어지고 있으며 이는 석유의 채굴이 점점 어려워지고 있음에 기인한다. 에너지의 현황을 객관적으로 살펴 보기 위해서 자동차에 있어서 절대적인 오일을 중심으로 그리고 통계자료 위주로 문제를 분석해 본다. 그리고 수소 연료 전지와 전기자동차 등 여러 가지 대체 에너지 운송기술이 많이 거론되고 있으나 널리 대중화 되고 있지 못하는 근본적인 문제점들이 어디에 있는지 분석해 본다. 이어서 소위 대체 에너지들이 자동차에 있어서 석유의 대체 수단으로 적합하지 않다면 과연 에너지를 가장 많이 쓰는 영역중의 하나인 운송 분야의 현재와 미래의 나아갈 방향은 무엇인지 그 해법을 생각해 본다. 석유를 대체할 에너지의 공급 방안이 충분하지 않다면 마지막으로 생각할 수 있는 것은 에너지의 소비 측면이다. 다행히도 그간 소비 측면의 개선 방안이 많이 소홀하게 취급되어져 왔다. 즉 에너지의 효율을 향상시킬 수 있는 여력이 충분하고도 많이 있다는 희망적인 소식이다. 이에 따라 에너지 효율 향상에 유용하게 사용할 수 있는 다양한 제어 기술을 소개한다. 에너지와 운송수단의 문제를 거시적이고 동시에 현실적으로 바라볼 수 있는 안목을 갖게 되기를 기대한다.

  • PDF

A Study on the Nonlinear Normal Mode Vibration Using Adelphic Integral (Adelphic Integral을 이용한 비선형 정규모드 진동 해석)

  • Huinam Rhee;Joo, Jae-Man;Pak, Chol-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.799-804
    • /
    • 2001
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6th order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhotf-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

  • PDF