• Title/Summary/Keyword: Automotive noise

Search Result 672, Processing Time 0.032 seconds

Acoustic Noise Source Identification in the Automotive Industry (자동차의 음향잡음의 원인규명 방안)

  • Hall, Paul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.91-97
    • /
    • 1996
  • We have all heard sounds that did not sound "right" while riding in an automobile. Objectionable sounds are difficult to find and understand because the sound field is complex and dynamic in the near field of an automobile. Many different noise sources and transmission paths must be understood before an engineering change can be recommended. This paper reviews the fundamental characterization of sound and chscusses the Sound Intensity measurement technique. Sound intensity measurements locate sources and sinks of acoustic energy. Used with narrowband analysis equipment, acoustic noise sources can be identified. Sound intensity measurements are made -in-situ and do not require specmi anechoic facilities. The measurement results in a vector representation of the near field sound field and can discriminate between multiple sound sources.d sources.

  • PDF

An Experimental Study on the Noise Reduction Method of HEV-relay Module (하이브리드 자동차용 계전기 모듈의 소음저감에 관한 실험적 연구)

  • Seo, Jae-Yong;Kim, Won-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.77-83
    • /
    • 2010
  • In this paper, the noise of HEV(hybrid electric vehicle)-relay module during the turn-on and turnoff switching is experimentally analyzed and an effective method is proposed to reduce the impact noise. First, enclosure methods of 100A relay part with urethane and silicon are tested to find out a better material to isolate the noise. This result shows that the urethane is a better for the noise isolation of relay, so the relays enclosed by urethane are installed in the relay module. Second, the noise of HEV-relay module is analyzed experimentally to identify the noise generation mechanism. From this result, it is found that the vibration transmitted to battery pack through bolt generates the structural borne noise with the frequency band of 200~2000 Hz, which is more serious when the switch is turned off. Finally, the direction of switching and the joint structure are modified in order to isolate the vibration transmitted to battery back. Both methods are very effective to reduce the switching noise.

Study on the Sound Quality Evaluation Method for the Vehicle Diesel Engine Noise (승용차 디젤 엔진 소음에 대한 음질 평가 기법 연구)

  • Kwon, Jo-Seph;Kim, Chan-Mook;Kim, Ki-Chang;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.883-889
    • /
    • 2011
  • The brand sound of vehicle diesel engine is recently one of the important advantage strategies in the automotive company. Because various noise components masked under high frequency level can be audible in quieter driving situation. Many researches have been carried out for subjective and objective assessments on vehicle sounds and noises. In particular, the interior sound quality has been one of research fields that can give high quality feature to vehicle products. Vehicle interior noise above 500 Hz is usually controlled by sound package parts. The materials and geometries of sound package parts directly affect on this high frequency noise. This paper describes the sound quality evaluation method for the vehicle diesel engine noise to establish objective criteria for sound quality assessment. Considering the sensitivity of human hearing to impulsive sounds such as diesel noise, the human auditory mechanism was simulated by introducing temporal masking in the time domain. Furthermore, each of the human auditory organs was simulated by computer codes, providing reasonable analytical explanations of typical human hearing responses to diesel noise. This method finally provides the sound quality index of vehicle diesel engine noise that includes high frequency intermittent offensive sounds caused by impacting excitations of combustion and piston slap.

Hyundai Motor's 4th NVH open BMT - Wind noise prediction on the HSM (Hyundai simplified model) using Ansys Fluent and LMS Virtual.Lab

  • Hallez, Raphael;Lee, Sang Yeop;Khondge, Ashok;Lee, Jeongwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.562-562
    • /
    • 2014
  • Assessment of aerodynamic noise is becoming increasingly important for automotive manufacturers. Flow passing a vehicle may indeed lead to high interior noise level and affect cabin comfort. Interior noise results from various mechanisms including aerodynamic fluctuations of the disturbed flow around the side mirror or pillar, hydrodynamic and acoustic loading of the car panels and windows, vibration of these panels and acoustic radiation inside the vehicle. Objective of the present study is to capture these important mechanisms in a simulation model and demonstrate the ability of the combined simulation tools Fluent / Virtual.Lab to provide accurate aerodynamic and interior noise prediction results. Previous study focused on the noise generated by the turbulence around the A-pillar structure of the HSM (Hyundai simplified model). The present study also includes the effect of the side-mirror and rain-gutter structures. Complete modeling process is presented including details on the unsteady CFD simulation and the vibro-acoustic model with absorption materials. Guidelines and best practices for building the simulation model are also discussed.

  • PDF

Optimization of an Intake Flow Noise Induced from an Automotive Turbocharger (차량용 터보차져 흡기 유동음 최적 개선)

  • Park, Hoil;Choi, Sungbae;Jang, Seongsik;Hwang, Junyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.546-552
    • /
    • 2015
  • In the previous study, the air flow noise around 1.6 k~1.8 kHz was analyzed, and could be reduced by machining a groove in the bore of compressor inlet in front of the main blades of a compressor wheel. It was proven that this groove was very effective for removing the noise without critical sacrifice of compressor performance, and in addition, it did not noticeably deteriorate vehicle performance, drivability and acceleration. It is interesting that the type of groove tried for 1.6~1.8 kHz noise reduction could be effective for another air flow noise, 4 k~6 kHz which is the 3rd order frequency range of turbocharger speed. This study tried various shapes of grooves for minimizing engine performance difference as well as reducing the 3rd order noise. Finally, it was shown that the groove should be round for the engine performance, and an optimal size exist for the noise and the engine performance.

Experimental Study on Noise Reduction of Fan for Automotive Air Conditioner (차량용 공조 팬의 소음 저감에 대한 실험적 연구)

  • Lee, Jin-Kab;Chung, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • This paper is the experimental study to investigate the noise sources location in order to reduce the noise level of line flow fan for the air conditioner in the subway car. The noise of line flow fan is caused by various factors such as the turbulence by air flow, random noise, noise of blade passing frequence(681Hz) and noise due to structural vibration of rotor unbalance(28.4Hz) by motor revolution. By performing the noise reduction on each sound source, the noise level is decreased as much as 5.7dB(A) through the controls of housing guide angle and distance, the configuration changes of flow passage shape and rotor balancing.

A Study on the Speed-based Active Compensation of the Kiss-Point of Dry-type Clutch Equipped with Automated Manual Transmission (자동화 수동변속기용 건식클러치의 속도기반 Kiss-Point 능동 보상에 관한 연구)

  • Choi, Woo-Seok;Lee, Kyo-Bum;Lim, Wonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.372-378
    • /
    • 2016
  • Clutch torque control is the key to the ride comfort improvement of a vehicle equipped with AMT (automated manual transmission). For such control, the torque transfer starting point, known as the "kiss point," should be indicated or at least estimated to compensate for the clutch torque. The kiss point changes due to wear, high temperature, and fatigue; as such, it should be estimated while the vehicle is being driven. In this study, the method of kiss point active estimation for an AMT vehicle with a dry-type clutch was devised. The kiss point is learned while the engine is in an idle state and while the transmission is at a neutral gear position. It is determined when the input shaft of the transmission starts to rotate by slowly engaging the clutch. The noise of the shaft speed signal during the slow engagement process is filtered for accurate control. The kiss point estimation at various clutch engagement speeds was analyzed via a vehicle test.

Robust Design of Connecting Rod Using Variable Stress (변동 응력을 이용한 커넥팅 로드 강건 설계)

  • Lee, Seungwoo;Kim, Hangyu;Lee, Taehyun;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.716-723
    • /
    • 2016
  • A connecting rod is a crucial part for transmitting an explosive force to the crankshaft in the engine. Stress concentration in connecting rod due to the accumulation of the repeated load may initiate micro crack and result in a crucial break down of the component. Two approaches are adopted to obtain a robust design of connecting rod. Inner and outer array matrix based on combinations of control factors and noise factors are constructed for using Taguchi method. Calculated stress results for each element of matrix are plotted in the Goodman diagram. Robust design approach by Taguchi method reduces stress concentration occurred in small end fillet area of the default model. Variable stress approach using Goodman diagram also confirms a robust design by Taguchi method.

Modeling and Injection Rate Estimation of a Piezo Injector for CRDI Diesel Engines (피에조 인젝터의 모델링 및 분사율의 추정)

  • Kim, Sun-Woo;Chung, Nam-Hoon;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2005
  • Stringent emission regulations and increasing demands on reductions of noise and vibration of common rail direct injection (CRDI) diesel engines lead to the advent of piezo-actuated injectors. Compared with solenoid-actuated injectors, piezo-actuated injectors generate greater force and give faster response time, resulting in more accurate and faster injections. The accurate and fast response of an injector can offer an opportunity to control the combustion process and pollutant formation. In this study, the mathematical model of a piezo-actuated injector is developed. An estimator of the injection rate of the piezo-actuated injector is designed based on this model. The sliding mode theory is applied to the estimator design in order to overcome model uncertainties. The injector model and the estimator are verified by the injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection timing and the injection rate of the piezo-actuated injector.

Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect (자체 맥동 감쇠 효과를 갖는 연료레일의 설계 변수별 압력맥동 특성에 관한 수치적 연구)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Song, Kyung-Suk;Kim, Bo-Kyoum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.186-192
    • /
    • 2007
  • In general, pulsation damper is installed in fuel rail for conventional MPI engine to decrease undesirable noise in vehicle cabin room. However, pulsation damper is so expensive that there are prevailing studies to reduce fuel pressure pulsations with integrated damping effect. This paper is one of basic studies for development of fuel rail to abate pulsations with self-damping effect. Primarily, the pressure pulsation characteristics was investigated with aspect ratio of cross section, wall thickness, and materials of fuel rail. A high aspect ratio or thin wall was found to absorb the pressure pulsations effectively. But volume effects on the fuel pressure pulsation reductions were not especially significant than cross section effects because volume increment rate is larger than pressure pulsation reduction rate. The fuel rail made of aluminum is effective for reduction of pressure pulsation than that of low-carbon steel. Pressure change period increases on the basis of same lengths of supply line and fuel rail as the volume is enlarged and/or the thickness of wall is thinned.