• 제목/요약/키워드: Automotive engine

검색결과 2,293건 처리시간 0.026초

Thermal Flow Analysis of Vehicle Engine Cooling System

  • Park, Kyoung-Suk;Won, Jong-Phil;Heo, Hyung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.975-985
    • /
    • 2002
  • This paper deals with theoretical model developed for analyzing the heat transfer of automotive cooling systems. The model has a modular structure which links various cooling system submodels. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through the cylinder wall in engine cylinder was analysed by using an engine cycle simulation program. In this paper, details of each submodel are described together with the overall structure of the vehicle model.

DEVELOPMENT OF A NEW MISFIRE DETECTION SYSTEM USING NEURAL NETWORK

  • Lee, M.;Yoon, M.;SunWoo, M.;Park, S.;Lee, K.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.637-644
    • /
    • 2006
  • The detection of engine misfire events is one of major concerns in engine control due to its negative effect on air pollution and engine performance. In this paper, a misfire detection system based on crankshaft angular speed fluctuation is developed. Synthetic variable method is adopted for the preprocessing of crankshaft angular speed. This method successfully estimates the work output of each cylinder by finding the effect of combustion energy on the crankshaft rotational speed or acceleration after virtually removing the effect of the internal inertia forces from the measured crankshaft speed signals. The detection system is developed using neural network with the revised synthetic angular acceleration as input which is derived from the preprocessing. Mathematical simulation is carried out for developing and verifying the misfire detection system. Finally, the reliability of the developed system is validated through an experiment.

가솔린 전자제어 엔진의 기술동향 (Technology Trend of Gasoline Electronic Control Engine)

  • 장경욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 제2회 학술대회 논문집 일렉트렛트 및 응용기술전문연구회
    • /
    • pp.1-8
    • /
    • 2000
  • Automotive electronics as we know it today encompasses a wide variety of devices and systems. Key to them all, and those yet to come. is the ability to sense and measure accurately automotive control parameters. In other words, sensors and actuators are the heart of any automotive electronics application. The important of sensors and actuators cannot be overemphasized. The future growth of automotive electronics is arguably more dependent on sufficiently accurate and low-cost sensors and actuators than on computers, controls, displays, and other technologies. Without them, all of controls system - engine. transmission. cruise, braking, traction, suspension, steering, lighting, windshield wipers, air conditioner/hearter - would not be possible. Those controls, of course, are key to car operation and they have made cars over the years more drivable, safe, and reliable. In this lecture, the principle and future trends of electronic control gasoline engine will be discuss.

  • PDF

Effect of Hydrogen Enriched LPG Fuelled Engine with Converted from a Diesel Engine

  • Choi, Gyeung-Ho;Lee, Jae-Cheon;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • 에너지공학
    • /
    • 제15권3호
    • /
    • pp.139-145
    • /
    • 2006
  • The purpose of this study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The objective of this paper is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to avoid abnormal combustion. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. The relative air-fuel ratio was increased from 0.8 to 1.3, and the ignition timing was controlled to be at MBT (minimum spark advance for best torque)

액상 분사 LPG 엔진 성능 및 차량 배기 배출물 특성에 관한 연구 (LPLi Engine Performance and Vehicle Exhaust Emission Characteristics)

  • 임종훈;명차리;박심수;양승주
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.15-21
    • /
    • 2003
  • LPG is considered as one of the most prominent alternative automotive fuels in worldwide. However, conventional mixer system can not meet the emission regulations as the mileage accumulation increased. Recently, much attention is focused on the development of LPG liquid injection fuel systems to increase the engine performance and reduce the exhaust emissions. This study evaluates the LPLi(Liquid Phase LPG injection) engine performance and exhaust emission characteristics using a 3.0 liter LPG engine. The fuel supply system and engine management system were changed from FBM into LPLi to control the precise mixture ratio and optimized spark advance.

실험계획법을 이용한 고효율 소형 열병합 시스템 성능 해석 (Performance Analysis of High Efficiency Co-generation System Using the Experimental Design Method)

  • 류미라;이준식;박정호;이성범;이대희
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.20-25
    • /
    • 2012
  • As a kind of distributed energy system, the co-generation system based Diesel engine using after-treatment device was devised for its environmental friendly and economic qualities. It is utilized in that the electric power is produced by the generator connected to the Diesel engine, and waste heat is recovered from both the exhaust gases and the engine itself by the finned tube and shell & tube heat exchangers. An after-treatment device composed ceramic heater and DOC(Diesel Oxidation Catalyst) is installed at the engine outlet in order to completely reignite the unburned fuel from the Diesel engine. In this study, mutual relation of each experimental condition was derived through minimum number of experiment using Taguchi Design and ANOVA recently used in the various fields. It is found that the total efficiency (thermal efficiency plus electric power generation efficiency) of this system reaches maximum 94.4% which is approximately higher than that of the typical diesel engine exhaust heat recovery system.

Cylinder Deactivation 엔진의 동작모드 전환 시 과도상태 공연비 제어 (Transient Air-fuel Ratio Control of the Cylinder Deactivation Engine during Mode Transition)

  • 권민수;이민광;김준수;선우명호
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.26-34
    • /
    • 2011
  • Hybrid powertrain systems have been developed to improve the fuel efficiency of internal combustion engines. In the case of a parallel hybrid powertrain system, an engine and a motor are directly coupled. Because of the hardware configuration of the parallel hybrid system, friction and the pumping losses of internal combustion engines always exists. Such losses are the primary factors that result in the deterioration of fuel efficiency in the parallel-type hybrid powertrain system. In particular, the engine operates as a power consumption device during the fuel-cut condition. In order to improve the fuel efficiency for the parallel-type hybrid system, cylinder deactivation (CDA) technology was developed. Cylinder deactivation technology can improve fuel efficiency by reducing pumping losses during the fuel-cut driving condition. In a CDA engine, there are two operating modes: a CDA mode and an SI mode according to the vehicle operating condition. However, during the mode change from CDA to SI, a serious fluctuation of the air-fuel ratio can occur without adequate control. In this study, an air-fuel ratio control algorithm during the mode transition from CDA to SI was proposed. The control algorithm was developed based on the mean value CDA engine model. Finally, the performance of the control algorithm was validated by various engine experiments.

연비 개선 및 CO2 저감을 위한 승용디젤 차량의 클러치타입 워터펌프 적용에 따른 실험적 연구 (An Experimental Study on the Clutch Type Water Pump of Diesel Passenger Vehicle for Reducing Fuel Consumption and CO2 Emission)

  • 정수진;박정권;오창복;조용석
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.123-134
    • /
    • 2012
  • A typical cooling system of an engine relies on a water pump that circulates the coolant through the system. The pump is typically driven by the crankshaft through a mechanical link with engine starting. In order to reduce the friction and warm-up time of an engine, the clutch-type water pump (CWP) was applied in 2.0 liter diesel vehicle. The clutch-type water pump can force cooling water to supply into an engine by the operation of an electromagnetic clutch equipped as the inner part of pump system. The onset of CWP is decided by temperature of cooling water and engine oil. And, the control logic for an optimal operation of the clutch-type water pump was developed and applied in engine and vehicle tests. In this study, the warm-up time was measured with the conventional water pump and clutch-type water pump in engine tests. And the emission and the fuel consumption were evaluated under NEDC mode in vehicle tests. Also, tests were carried out for the various temperature conditions starting the operation of CWP. From the results of the study, the application of CWP can improve the fuel consumption and $CO_2$ reduction by about 3%.

국내 윤활관리 현황분석 및 품질 비교평가 (Comparative Study of the Quality of Automotive Engine Oils Being Marketed)

  • 정충섭;김명희;이현기;강경선;김월중;장영식;심규성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.359-365
    • /
    • 1999
  • We have evaluated the performance and some physical properties of 25 automotive engine oils (21 domestic and 5 imported products) which are purchased on the market to verify the API(American Petroleum Institute) or ILSAC(International Lubricant Standardization and Approval Committee) certification marks attached on the products and to determine the necessity of the quality control of the engine oils on the market. 12 test items are chosen according to API engine oil specification, which are flash point, pour point, cold cranking simulator apparent viscosity, pumping viscosity, gelation index, HTHS(High Temperature High Shear viscosity), foam, high temperature foam, filterability, volatility, high temperature deposit(TEOST), phosphorus content. We have found one product which did not meet the API specification on gelation index, one on HTHS, four on foam, and one on volatility, which implies that the quality control system is in need to check the fidelity of the certification marks attached on the engine oils being marketed. In addition, this works raises the necessity of the upgrade of the present Korean engine oil specification.

  • PDF

자동차용 가솔린 기관의 실린더 블록에 대한 열적 거동 해석 (Thermal Behavior Analysis on the Cylinder Block of an Automotive Gasoline Engine)

  • 손병진;김창헌
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.211-221
    • /
    • 1998
  • Thermal behavior on the cylinder block of a 4-cylinder, 4-stroke 2.0L SOHC gasoline engine was numerically and experimentally analyzed. The numerical calculation was performed using the finite element method. The cylinder block was modelled as a three dimensional finite element by considering its geometry. The physical domain was devided into hexahedron elements. 16 thermocouples were installed at points of 2mm inside from cylinder wall near top ring of piston in cylinder block, which points have suffered major thermal loads and suggested as proper measurement points for engine design by industrial engineers. Under full load and 9$0^{\circ}C$ coolant temperature condition, temperature behavior of cylinder block according to engine speed were analyzed. The results showed that temperature rose gradually to conform to a function of 2nd~4th order of engine speed at intake side, exhaust and siamese side, respectively. As engine load was changed from 100 to 50% by 25% step, temperature curve also conformed to 2nd~7th order function of engine speed. Temperature differences by load condition were similar among 100, 75% and 50%. Under full load and coolant temperature of 11$0^{\circ}C$, temperature behavior were also analyzed and the result also showed conformance to 2n d~7th order function of engine speed. Temperature curve was transferred in parallel upwards corresponding coolant temperature rise.

  • PDF