• Title/Summary/Keyword: Automotive electric system

Search Result 377, Processing Time 0.019 seconds

On the Ensuring Safety and Reliability through the Application of ISO/PAS 21448 Analysis and STPA Methodology to Autonomous Vehicle

  • Kim, Min Joong;Choi, Kyoung Lak;Kim, Joo Uk;Kim, Tong Hyun;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.169-177
    • /
    • 2021
  • Recently, the use of electric and electronic control systems is increasing in the automobile industry. This increase in the electric and electronic control system greatly increases the complexity of designing a vehicle, which leads to an increase in the malfunction of the system, and a safety problem due to the malfunction is becoming an issue. Based on IEC 61508 relating to the functional safety of electrical/electronic/programmable electronics, the ISO 26262 standard specific to the automotive sector was first established in 2011, and a revision was published in 2018. Malfunctions due to system failure are covered by ISO 26262, but ISO/PAS 21448 is proposed to deal with unintended malfunctions caused by changes in the surrounding environment. ISO 26262 sets out safety-related requirements for the entire life cycle. Functional safety analysis includes FTA (Fault Tree Analysis), FMEA (Failure Mode and Effect Analysis), and HAZOP (Hazard and Operability). These analysis have limitations in dealing with failures or errors caused by complex interrelationships because it is assumed that a failure or error affecting the risk occurs by a specific component. In order to overcome this limitation, it is necessary to apply the STPA (System Theoretic Process Analysis) technique.

A Study on the Steering System of Electric Scooter

  • Park, Sung Cheon
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.219-225
    • /
    • 2022
  • Recently, the popularization of personal mobility(PM) has made it possible to see many electric scooters. The energy source of personal transportation used by the general public and the disabled can be seen as environmentally friendly as electricity. Personal transportation means are divided into small electric vehicles because they use electric energy, and they are being treated as new models by automobile manufacturers in each country and spurring development. On the other hand, personal transportation means may cause various types of traffic accidents as they travel between roads and a human walk. In order to prevent such accidents, it is judged that the enactment of laws on the establishment of specifications for electric scooters, which are personal transportation means, and the method of restricting road operation should be given priority. The electric scooter is basically different from the conventional vehicle. The steering shaft of the steering system applied to the electric scooter one to two is possible. 1 to 2 the front-wheel under the steering column is used. It is classified according to the number of wheel installed at the electric scooter is the vehicle body into 2 wheel - electric scooter, and 3 wheel - electric scooter and 4 wheel - electric scooter. In this study, we propose a steering shaft design model that can be applied to an electric scooter, one of personal transportation means. A design model for 1-shaft steering and 2-shafts steering that can be applied to electric scooters is proposed. In addition, we have produced the prototypes for the commercialization of the proposed models, and reviewed the pros and cons of the manufactured prototypes and models.

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

Feasibility Study of a Series Hybrid-Electric Propulsion System for a Fixed Wing VTOL Unmanned Aerial Vehicle (고정익 수직이착륙 무인항공기를 위한 하이브리드-전기 추진시스템의 타당성 연구)

  • Kim, Boseong;Bak, Jeonggyu;Yun, Senghyun;Cho, Sooyoung;Ha, Juhyung;Park, Gyusung;Lee, Geunho;Won, Sunghong;Moon, Changmo;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1097-1107
    • /
    • 2015
  • General VTOL aircraft uses gas turbine engine which has high power to weight ratio. However, in the VTOL UAV in small sector, the gas turbine as a prime mover is not adequate because of the limitation of the high fuel consumption ratio of the gas turbine. In this research, The Series Hybrid-Electric Propulsion System(SHEPS) has been proposed and technology survey & comparison analysis has conducted to constitute propulsion system for engine, electric motor and battery. To achieve this object a 65kg-class P-UAV from "Company I" was used. And to estimate the validity of power control algorithm and developed power management control, Matlab/simulink$^{(R)}$ has been used for the simulation. As a result, the developed algorithm worked comparatively well and the research has predicted that SHEPS was satisfied enough for 7 hour of endurance for mission profile.

Development of a Virtual Excavator using SimMechanics and SimHydraulic (SimMechanics SimHydraulic을 이용한 가상 굴삭기 개발)

  • Le, Q.H.;Jeong, Y.M.;Nguyen, C.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Excavation is an important work in mining, earth removal and general earthworks. Nowadays, automation in excavator has been studied by several researchers. In the excavator research methods, simulation is one of the low cost methods for applied to test safely. In this paper, designed a virtual hydraulic excavator that with the control and the dynamic. At first, the simulation of hydraulic system for excavator's attachment such as boom, arm and bucket using Matlab/Simhydraulic is presented. Second, the dynamic model of excavator is distributed to combine with the hydraulic system. For controlling this system, electric joysticks are used to operate the orifice open areas in Main Control Valve. The simulation result is described to analysis the performance of this virtual excavator.

Component Sizing and Evaluating Fuel Economies of a Hybrid Electric Scooter (하이브리드 이륜차의 동력원 용량 매칭 및 연비평가)

  • Lee, Dae-In;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.98-105
    • /
    • 2012
  • Recently, most of the countries started to regulate the emission of vehicle because of the global warming. The engine scooter is also one of the factor which cause the pollution. The hybrid system of a vehicle has many advantages such as fuel saving and emission reduction. The purpose of this study is to choose optimal size of engine, motor and battery for hybrid scooter system using Dynamic programming. The dynamic programming is an effective method to find an optimal solution for the complicated nonlinear system, which contains various constraints of control variables. The power source size of hybrid scooter was chosen through the backward simulator using dynamic programming. From the analysis, we choose the optimal size of each power source. To verify the optimal size of the power source, the Forward simulation was carried out. As a result, the fuel efficiency of hybrid scooter has significantly increased in comparison with that of engine scooter.

Computationally Effective Optimization of Hybrid Vehicle Powertrain Design Using Characteristic Loss Evaluation (특성 손실 평가를 통한 하이브리드 자동차 동력전달장치의 빠른 설계 최적화)

  • Park, Seho;Ahn, Changsun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.591-600
    • /
    • 2015
  • The efficiency of a powertrain system of hybrid vehicle is highly dependent on the design and control of the hybrid powertrain system. In other words, the optimal design of the powertrain systems is coupled with optimal control of the powertrain system. Therefore, the solution of an optimal design problem for hybrid vehicles is computationally and timely very expensive. For example, dynamic programming, which is a recursive optimization method, is usually used to evaluate the best fuel economy of certain hybrid vehicle design, and, thus, the evaluation takes tens of minutes to several hours. This research aims to accelerate the speed of efficiency evaluation of hybrid vehicles. We suggest a mathematical treat and a methodological treat to reduce the computational load. The mathematical treat is that the dynamics of system is discretized with sparse sampling time without loss of energy balance. The methodological treat is that the efficiency of the hybrid vehicle is inferred by characteristic loss evaluation that is computationally inexpensive. With the suggested methodology, evaluating a design candidate of hybrid powertrain system is taken few minutes, which was taken several hours when dynamic programming is used.

MODELING OF IRON LOSSES IN PERMANENT MAGNET SYNCHRONOUS MOTORS WITH FIELD-WEAKENING CAPABILITY FOR ELECTRIC VEHICLES

  • Chin, Y.K.;Soulard, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • Recent advancements of permanent magnet (PM) materials and solid-state devices have contributed to a substantial performance improvement of permanent magnet machines. Owing to the rare-earth PMs, these motors have higher efficiency, power factor, output power per mass and volume, and better dynamic performance than induction motors without sacrificing reliability. Not surprisingly, they are continuously receiving serious considerations for a variety of automotive and propulsion applications. An electric vehicle (EV) requires a high-effficient propulsion system having a wide operating range and a capability of generating a high peak torque for short durations. The improvement of torque-speed performance for these systems is consequently very important, and researches in various aspects are therefore being actively pursued. A great emphasis has been placed on the efficiency and optimal utilization of PM machines. This requires attention to many aspects related to the machine design and overall performance. In this respect, the prediction of iron losses is particularly indispensable and challenging, especially for drives with a deep field-weakening range. The objective of this paper is to present iron loss estimations of a PM motor over a wide speed range. As aforementioned, in EV applications core losses can be significant during high-speed operation and it is imperative to evaluate these losses accurately and take them into consideration during the motor design stage. In this investigation, the losses are predicted by using an analytical model and a 2D time-stepped finite element method (FEM). The results from different analytical approaches are compared with the FEM computations. The validity of each model is then evaluated by these comparisons.

Development of DC/DC Converters and Actual Vehicle Simulation Experiment for 150 kW Class Fuel-cell Electric Vehicle (150kW급 수소연료전지 차량용 DC/DC 컨버터 개발 및 실차모사 실험)

  • Kim, Sun-Ju;Jeong, Hyeonju;Choi, Sewan;Cho, Jun-Ho;Jeon, Yujong;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • This paper proposes a power system that includes a 120k W fuel cell DC-DC converter (FDC) and 30 kW bidirectional DC-DC converter (BHDC) for a 150 kW fuel-cell vehicle. With a high DC link voltage of 800 V, the efficiency and power density of the power electronic components are improved. Through the modular design of FDC and BHDC, electric components are shared, resulting in reduced mass production costs. The switching frequency of 30 kHz of full SiC devices and optimal design of coupled inductor reduce the volume, achieving a power density of 8.3 kW/L. Furthermore, a synergetic operation strategy using variable limiter control of FDC and BHDC was proposed to efficiently operate the fuel cell vehicle considering the fuel cell stack efficiency according to the load. Finally, the performance of the prototype was verified by Highway Fuel Economy Driving Schedule testing, EMI test, and the linked operation between FDC and BHDC. The full load efficiencies of the FDC and BHDC prototypes are 98.47% and 98.74%, respectively.

Influential Factors for NO_X Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine (중형 운행 경유차용 Urea-SCR 시스템의 아랫첨자 $NO_X$ 저감성능에 미치는 영향인자)

  • Kim, Hong-Suk;Jeong, Young-Il;Song, Myoung-Ho;Lee, Seang-Wock;Park, Hyun-Dae;Hwang, Jae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.154-161
    • /
    • 2009
  • This study is a part of project of urea-SCR system development for an in-use medium duty diesel engine. This study shows the effect of ammonia oxidation catalyst and SCR volume on $NO_X$ reduction performance. When AOC(Ammonia Oxidation Catalyst) is not used, the urea injection should be controlled accurately to prevent $NH_3$ slip. However, it is found that the accurate $NH_3$ slip control is not easy without AOC in real engine operating conditions, because $NH_3$ and $NO_X$ reaction characteristics change with many factors such as exhaust gas temperature and $NH_3$ absorbance on SCR. SCR volume is also one of important design parameters. This study shows that $NO_X$ reduction efficiency increases with increase of SCR volume especially at high space velocity and low exhaust gas temperature conditions. Additionally, this paper shows the emissions of EURO-2 medium duty diesel engine can be improved to the level of EURO-5 with a DPF and urea-SCR system.