• Title/Summary/Keyword: Automotive Simulation Models

검색결과 193건 처리시간 0.02초

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION - PART I: POWERTRAIN MODELLING

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.459-468
    • /
    • 2006
  • The objective of this paper is the development of the forward-looking dynamic simulation model of a hybrid electric vehicle(HEV) for a fuel economy study. The specification of the vehicle is determined based on two factors, engine peak power to curb weight ratio and specific engine power. The steady state efficiency models of the powertrain components are explained in detail. These include a spark ignition direct injection(SIDI) engine, an integrated starter alternator(ISA), and an infinitely variable transmission(IVT). The paper describes the integration of these models into a forward facing dynamic simulation diagram using the AMESim environment. Appropriate vehicle and driver models have been added and described. The controller was designed in Simulink and was combined with the physical powertrain model by the co-simulation interface. Finally, the simulation results of the HEV are compared with those of a baseline vehicle in order to demonstrate the fuel economy potential. Results for the vehicle speed error and the fuel economy over standard driving cycles are illustrated.

자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링 (Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels)

  • 정연찬
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.

자동차 클러치의 마찰 모델과 시뮬레이션 (On the Modeling and Simulation of Friction for an Automotive Clutch)

  • 이병수;이재천
    • 한국소음진동공학회논문집
    • /
    • 제13권2호
    • /
    • pp.116-125
    • /
    • 2003
  • Four models for stick-slip friction are presented and are adopted for a numerical simulation study for a manual transmission clutch damper in idle mode. Meaning of parameters for friction models are explained and proper values are suggested. Also explained ate the reason why those specific values for the parameters are chosen. Preferable model for the clutch damper In Idle mode is discussed in terms of calculation efficiency and fidelity of the model based on real measured data. For clutch damper idle mode simulation studies, all four models perform equally well.

4륜구동.조향 차량의 선회 성능 해석을 위한 Simulation Tool 개발 (Development of a Simulation Tool for the Cornering Performance Analysis of 4WD/4WS Vehicles)

  • 계경태;김준영;허건수
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.195-206
    • /
    • 1997
  • In this study, a simulation tool is developed in order to investigate non steadystate cornering performance of 4WD/4WS vehicles. The 4WD/4WS vehicles are modeled as a 8-th order dynamic system which includes complex non-linear vehicle dynamics and tire models. The vehicle models are constructed into a modulated simulation tool and are utilized for analyzing cornering performance such as combined braking and steering, cornering on the icy read and $\mu$-split braking, The whole analysis is done with the simulation tool which consists of a number of subsystems and offers graphic environment. Simulation results show that this tool is useful and cost-effective in the dynamic analysis of the combustion-engine vehicles as well as electrically driven vehicles.

  • PDF

COLLABORATIVE PROCESS PLANNING AND FLOW ANALYSIS FOR AUTOMOTIVE ASSEMBLY SHOPS

  • Noh, S.D.;Kim, G.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.217-226
    • /
    • 2006
  • To maintain competitiveness in the modern automotive market, it is important to carry out process planning concurrently with new car development processes. Process planners need to make decisions concurrently and collaboratively in order to reduce manufacturing preparation time for developing a new car. Automated generation of a simulation model by using the integrated process plan database can reduce time consumed for carrying out a simulation and allow a consistent model to be used throughout. In this research, we developed a web-based system for concurrent and collaborative process planning and flow analysis for an automotive general assembly using web, database, and simulation technology. A single integrated database is designed to automatically generate simulation models from process plans without having to rework the data. This system enables process planners to evaluate their decisions quickly, considering various factors, and easily share their opinions with others. By using this collaborative system, time and cost put into the assembly process planning can be reduced and the reliability of the process plan would be improved.

ASM을 이용한 전기 이륜차 동력 특성 해석에 관한 연구 (A Study on Power Characteristic of Electric Motorcycle using ASM)

  • 이태형;김병우;김용은
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.58-65
    • /
    • 2013
  • In this paper, we propose that a model based design for an electric motor cycle system using ASM (Automotive Simulation Models). Before prototyping a realistic electric motorcycle, a reliable simulation program is required to test the capacities of the power sources and optimize the parameters of an electric motorcycle. Because ASM is based on Simulink, we can design the drivetrain and powertrain of the vehicle model systems easily. To verify the electric motorcycle system analysis of design parameters such as max power, capacity, state of charge and slope angle is carried out by the simulation and experimental method. The predicted results by the development model were in good agreement with the experimentally obtained results. Therefore, the proposed electric motorcycle model can effectively reduce the expenses during the designing of an electric motorcycle system.

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

동역학 해석을 통한 송전선로 검사로봇 프레임 설계에 관한 연구 (Dynamic Stiffness Design of Inspection Robot Frame Using Multi-body Dynamic Simulation)

  • 이준영;김문영;임지윤;김창환;임홍재
    • 한국소음진동공학회논문집
    • /
    • 제25권3호
    • /
    • pp.169-175
    • /
    • 2015
  • This study aims to improve the dynamic stiffness of an inspection robot frame to prevent derailment from transmission lines. Finite element models for the transmission lines and robot frame are developed for the multi-body dynamic simulation. Natural frequency analysis was conducted using the FE models. Three types of spacer damper clamps installed on 4-conductor transmission lines are used to evaluate the derailment of the robot. Multi-body dynamic simulations with FE models are demonstrated for sub-span oscillation. When the robot operates, derailment of inspection robot from the transmission lines is determined because of resonance. To prevent the resonance, body position was changed and thickness optimization was conducted. The results show that derailment was not occurred because of the natural frequency improvement.

단순 차량 모델을 이용한 능동 현가장치 제어기 설계 (Design of an Active Suspension Controller with Simple Vehicle Models)

  • 임성진;정진화
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

COMPARISON OF RIDE COMFORTS VIA EXPERIMENT AND COMPUTER SIMULATION

  • Yoo, W.S.;Park, S.J.;Park, D.W.;Kim, M.S.;Lim, O.K.;Jeong, W.B.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.309-314
    • /
    • 2006
  • In this paper, the ride comfort from a computer simulation was compared to the experimental result. For measuring ride comfort of a passenger car, acceleration data was obtained from the floor and seat during highway running with different speeds. The measured acceleration components were multiplied by the proper weighting functions, and then summed together to calculate overall ride values. Testing several passenger cars, the ride comforts were compared. In order to investigate the effect of vibration signals on the steering wheel, an apparatus to measure the vibrations and weighting functions on the steering wheel were designed. The effect of the steering accelerations on the ride comfort were investigated and added for the overall ride comfort. For the computer simulations, Korean dummy models were developed based on the Hybrid III dummy models. For the Korean dummy scaling, the national anthropometric survey of Korean people was used. In order to compare and check the validity of the developed Korean dummy models, dynamic responses were compared to those of Hybrid III dummy models. The computer simulation using the MADYMO software was also compared to the experimental results.