• Title/Summary/Keyword: Automotive Detection

Search Result 337, Processing Time 0.026 seconds

Development of Sound Quality Index with Characterization of BSR Noise in a Vehicle (자동차 BSR 소음특성과 음질 인덱스 개발)

  • Shin, Su-Hyun;Kim, Duck-Whan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.447-452
    • /
    • 2012
  • Among the various elements affecting a customer's evaluation of automobile quality, buzz, squeak and rattle (BSR) are considered to be major factors. In most vehicle manufacturers, the BSR problems are solved by find-fix method with the vehicle road test, mainly due to various excitation sources, complex generation mechanism and subjective response. The aim of this paper is to develop the integrated experimental method to systematically tackle the BSR problems in early stage of the vehicle development cycle by resolving these difficulties. To achieve this aim, the developed experimental method ought to include the following requirements: to find and fix the BSR problem for modules instead of a full vehicle in order to tackle the problem in the early stage of the vehicle development cycle; to develop the exciter system including the zig and road-input-signal reproducing algorithm; to automatically localize the source region of BSR; to develop sound quality index that can be used to assess the subjective responses to BSR. Also, the BSR sound quality indexes based on the Zwicker's sound quality parameters using a multiple regression analysis. The four sound metrics from Zwicker's sound quality parameter are computed for the signals recorded for eight BSR noise source regions localized by using the acoustic-field visualized results. Then, the jury test of BSR noise are performed for participants. On a basis of the computed sound metrics and jury test result, sound quality index is developed to represent the harsh of BSR noise. It is expected that the developed BSR detection system and sound quality indexes can be used to reduce the automotive interior BSR noise in terms of subjective levels as well as objective levels.

  • PDF

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.

Flaw Detection in Pipe-Welded Zone by Using Wavelet Transform and SH-EMAT (웨이브렛 변환과 SH-EMAT을 이용한 배관 용접부 결함 검출)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1511-1519
    • /
    • 2012
  • Pipe structures contain many welded zones, and ultrasonic tests are increasingly being performed by using automated testing devices in order to evaluate the weld integrity. An electromagnetic acoustic transducer (EMAT) is a noncontact transducer that can transmit or receive ultrasonic waves without a couplant. Furthermore, it can easily generate specific guided waves such as SH (shear horizontal) or Lamb waves by altering the design of the coil and magnet. Therefore, an EMAT should be useful for application to an automated ultrasonic inspection system. In this study, SH waves generated using an EMAT were applied to inspect the pipe-weld zone. To analyze the specific SH mode (SH0) from the SH wave signals, wavelet transform was applied. It was found that flaws could be detected precisely because the intensity of the $SH_0$ mode-frequency, which is analyzed by using wavelet transform, is proportional to the length of the flaw.

Hardware-In-the-Loop Simulation of ECU using Reverse Engineering (역공학을 이용한 ECU의 Hardware-In-the-Loop Simulation)

  • Park, Ji-Myoung;Ham, Won-Kyung;Ko, Min-Suk;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Increasing the proportion of an embedded system in automotive industry, test methods for evaluation and fault detection of the embedded system have been researched. HILS is a test method that is used in the development and test of complex real-time embedded systems. In this study, we defined the HILS method of the ECU, one of the embedded systems used in automobiles. Our method is to create a test model that can provide a virtual vehicle environment to the ECU on the basis of the actual vehicle data. The test model has reference information that can transmit the sensor signal and CAN Message into the ECU from HILS tester. In this study, the HILS can detect faults of the target ECU.

A Study on the Non-Contact Detection Technique of Defects Using AC Current - The Influence of Frequency and lift-off - (교류전류를 이용한 비접촉결함탐상법에 관한 연구 - 주파수 lift-off의 영향 -)

  • Kim, Hoon;Na, Eu-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • New nondestructive inspection (NDI) technique to detect the defect in metal was developed in which an electromagnetic field is induced in a metal by AC current flowing in the magnetic coil and the leak magnetic-flux disturbed by defects is measured using a tape-recorder head with air gap. This technique can be applied in evaluating the location and sizing of surface defects in components of the ferromagnetic body by means of the non-contacting measurement. In this paper, we have applied this technique to the evaluation of two-dimensional surface cracks in ferromagnetic metal, and also investigated the influence of the various frequencies and lift-off. Defects were detected with maximum values in the distribution of voltage and it was found that the maximum values tend to increase with the defect depth. Although the maximum values for defects are affected by the frequency and lift-off, the depth of small defects can be estimated from the linear relationship between the depth and voltage rate$(V_0/V_{ave})$.

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.

Shearing Phase Lock-in Infrared Thermography for Defects Evaluation of Metallic Materials Specimen (금속재료 시편의 결함평가에 대한 전단위상 Lock-in 적외선열화상 연구)

  • Park, Jeong-Hak;Choi, Man-Yong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • This paper proposes method to evaluate the location and size of the internal defects of metallic specimens by the shearing phase lock-in infrared thermography. Until now, infrared thermography test for metal specimen of STS304 and Cu-Zn were conducted to find the best test conditions. However, In unspecified situation of the form and existence of defects, there was a disadvantage to takes a long time for finding the optimal experimental conditions. The defect detection and evaluation was performed at 60 MHz signal using lock-in and shearing-phase method under limited heating conditions. By shearing-phase distribution method, Defects for the maximum, minimum and zero points were quantitatively detected at the size and location of the subsurface. As results, application of the proposed technique was verified for STS304 and Cu7-Zn3 with artificial defect and factors affected defect evaluation were searched and analyzed.

Transition-based Data Decoding for Optical Camera Communications Using a Rolling Shutter Camera

  • Kim, Byung Wook;Lee, Ji-Hwan;Jung, Sung-Yoon
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.422-430
    • /
    • 2018
  • Rolling shutter operation of CMOS cameras can be utilized in optical camera communications in order to transmit data from an LED to mobile devices such as smart-phones. From temporally modulated light, a spatial flicker pattern is obtained in the captured image, and this is used for signal recovery. Due to the degradation of rolling shutter images caused by light smear, motion blur, and focus blur, the conventional decoding schemes for rolling shutter cameras based on the pattern width for 'OFF' and 'ON' cannot guarantee robust communications performance for practical uses. Aside from conventional techniques, such as polynomial fitting, histogram equalization can be used for blurry light mitigation, but it requires additional computation abilities resulting in burdens on mobile devices. This paper proposes a transition-based decoding scheme for rolling shutter cameras in order to offer simple and robust data decoding in the presence of image degradation. Based on the designed synchronization pulse and modulated data symbols according to the LED dimming level, the decoding process is conducted by observing the transition patterns of two sequential symbol pulses. For this, the extended symbol pulse caused by consecutive symbol pulses with the same level determines whether the second pulse should be included for the next bit decoding or not. The proposed method simply identifies the transition patterns of sequential symbol pulses other than the pattern width of 'OFF' and 'ON' for data decoding, and thus, it is simpler and more accurate. Experimental results ensured that the transition-based decoding scheme is robust even in the presence of blurry lights in the captured image at various dimming levels

Self-driving quarantine robot with chlorine dioxide system (이산화염소 시스템을 적용한 자율주행 방역 로봇)

  • Bang, Gul-Won
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.145-150
    • /
    • 2021
  • In order to continuously perform quarantine in public places, it is not easy to secure manpower, but using self-driving-based robots can solve problems caused by manpower. Self-driving-based quarantine robots can continuously prevent the spread of harmful viruses and diseases in public institutions and hospitals without additional manpower. The location of the autonomous driving function was estimated by applying the Pinnacle filter algorithm, and the UV sterilization system and chlorine dioxide injection system were applied for quarantine. The driving time is more than 3 hours and the position error is 0.5m.Soon, the stop-avoidance function was operated at 95% and the obstacle detection distance was 1.5 m, and the automatic charge recovery was charged by moving to the charging cradle at the remaining 10% of the battery capacity. As a result of quarantine with an unmanned quarantine system, UV sterilization is 99% and chlorine dioxide is sterilized more than 95%, which can contribute to reducing enormous social costs.

Improved LTE Fingerprint Positioning Through Clustering-based Repeater Detection and Outlier Removal

  • Kwon, Jae Uk;Chae, Myeong Seok;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.369-379
    • /
    • 2022
  • In weighted k-nearest neighbor (WkNN)-based Fingerprinting positioning step, a process of comparing the requested positioning signal with signal information for each reference point stored in the fingerprint DB is performed. At this time, the higher the number of matched base station identifiers, the higher the possibility that the terminal exists in the corresponding location, and in fact, an additional weight is added to the location in proportion to the number of matching base stations. On the other hand, if the matching number of base stations is small, the selected candidate reference point has high dependence on the similarity value of the signal. But one problem arises here. The positioning signal can be compared with the repeater signal in the signal information stored on the DB, and the corresponding reference point can be selected as a candidate location. The selected reference point is likely to be an outlier, and if a certain weight is applied to the corresponding location, the error of the estimated location information increases. In order to solve this problem, this paper proposes a WkNN technique including an outlier removal function. To this end, it is first determined whether the repeater signal is included in the DB information of the matched base station. If the reference point for the repeater signal is selected as the candidate position, the reference position corresponding to the outlier is removed based on the clustering technique. The performance of the proposed technique is verified through data acquired in Seocho 1 and 2 dongs in Seoul.