• Title/Summary/Keyword: Automorphism group

Search Result 90, Processing Time 0.021 seconds

ON THE FINITENESS OF REAL STRUCTURES OF PROJECTIVE MANIFOLDS

  • Kim, Jin Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.109-115
    • /
    • 2020
  • Recently, Lesieutre constructed a 6-dimensional projective variety X over any field of characteristic zero whose automorphism group Aut(X) is discrete but not finitely generated. As an application, he also showed that X is an example of a projective variety with infinitely many non-isomorphic real structures. On the other hand, there are also several finiteness results of real structures of projective varieties. The aim of this short paper is to give a sufficient condition for the finiteness of real structures on a projective manifold in terms of the structure of the automorphism group. To be more precise, in this paper we show that, when X is a projective manifold of any dimension≥ 2, if Aut(X) does not contain a subgroup isomorphic to the non-abelian free group ℤ ∗ ℤ, then there are only finitely many real structures on X, up to ℝ-isomorphisms.

SOLUTIONS AND STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS ON AN AMENABLE GROUP WITH AN INVOLUTIVE AUTOMORPHISM

  • Ajebbar, Omar;Elqorachi, Elhoucien
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.55-82
    • /
    • 2019
  • Given ${\sigma}:G{\rightarrow}G$ an involutive automorphism of a semigroup G, we study the solutions and stability of the following functional equations $$f(x{\sigma}(y))=f(x)g(y)+g(x)f(y),\;x,y{\in}G,\\f(x{\sigma}(y))=f(x)f(y)-g(x)g(y),\;x,y{\in}G$$ and $$f(x{\sigma}(y))=f(x)g(y)-g(x)f(y),\;x,y{\in}G$$, from the theory of trigonometric functional equations. (1) We determine the solutions when G is a semigroup generated by its squares. (2) We obtain the stability results for these equations, when G is an amenable group.

A CHARACTERIZATION OF Ck×(C*) FROM THE VIEWPOINT OF BIHOLOMORPHIC AUTOMORPHISM GROUPS

  • Kodama, Akio;Shimizu, Satoru
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.563-575
    • /
    • 2003
  • We show that if a connected Stein manifold M of dimension n has the holomorphic automorphism group Aut(M) isomorphic to $Aut(C^k {\times}(C^*)^{n - k})$ as topological groups, then M itself is biholomorphically equivalent to C^k{\times}(C^*)^{n - k}$. Besides, a new approach to the study of U(n)-actions on complex manifolds of dimension n is given.

AUTOMORPHISMS OF UNIFORM LATTICES OF NILPOTENT LIE GROUPS UP TO DIMENSION FOUR

  • Lee, Jong Bum;Lee, Sang Rae
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.653-666
    • /
    • 2020
  • In this paper, when G is a connected and simply connected nilpotent Lie group of dimension less than or equal to four, we study the uniform lattices Γ of G up to isomorphism and then we study the structure of the automorphism group Aut(Γ) of Γ from the viewpoint of splitting as a natural extension.

FLAG-TRANSITIVE POINT-PRIMITIVE SYMMETRIC DESIGNS AND THREE DIMENSIONAL PROJECTIVE SPECIAL UNITARY GROUPS

  • Daneshkhah, Ashraf;Zarin, Sheyda Zang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2029-2041
    • /
    • 2017
  • The main aim of this article is to study symmetric (v, k, ${\lambda}$) designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSU(3, q). We indeed show that such designs must be complete.

CUBIC SYMMETRIC GRAPHS OF ORDER 10p3

  • Ghasemi, Mohsen
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.241-257
    • /
    • 2013
  • An automorphism group of a graph is said to be $s$-regular if it acts regularly on the set of $s$-arcs in the graph. A graph is $s$-regular if its full automorphism group is $s$-regular. In the present paper, all $s$-regular cubic graphs of order $10p^3$ are classified for each $s{\geq}1$ and each prime $p$.

THE CHARACTER TABLE OF THE GROUP $GL_2(Q)$WHEN EXTENDED BY A CERTAIN GROUP OF ORDER TWO

  • Darafsheh, M.R.;Larki, F.Nowroozi
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.875-886
    • /
    • 2000
  • Let G denote either of the groups $GL_2(q)$ or $SL_2(q)$. Then ${\theta}$:G -> G given by ${\theta}(A)$ = ${(A^t)}^{-l}$, where $A^t$ denotes the transpose of the matrix A, is an automorphism of G. Therefore we may form the group G.$<{\theta}>$ which is the split extension of the group G by the cyclic group $<{\theta}>$ of order 2. Our aim in this paper is to find the complex irreducible character table of G.$<{\theta}>$.

ON CONJUGACY OF p-GONAL AUTOMORPHISMS

  • Hidalgo, Ruben A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.411-415
    • /
    • 2012
  • In 1995 it was proved by Gonz$\acute{a}$lez-Diez that the cyclic group generated by a p-gonal automorphism of a closed Riemann surface of genus at least two is unique up to conjugation in the full group of conformal automorphisms. Later, in 2008, Gromadzki provided a different and shorter proof of the same fact using the Castelnuovo-Severi theorem. In this paper we provide another proof which is shorter and is just a simple use of Sylow's theorem together with the Castelnuovo-Severi theorem. This method permits to obtain that the cyclic group generated by a conformal automorphism of order p of a handlebody with a Kleinian structure and quotient the three-ball is unique up to conjugation in the full group of conformal automorphisms.

GROUP ACTION FOR ENUMERATING MAPS ON SURFACES

  • Mao, Linfan;Liu, Yanpei
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.201-215
    • /
    • 2003
  • A map is a connected topological graph $\Gamma$ cellularly embedded in a surface. For any connected graph $\Gamma$, by introducing the concertion of semi-arc automorphism group Aut$\_$$\frac{1}{2}$/$\Gamma$ and classifying all embedding of $\Gamma$ undo. the action of this group, the numbers r$\^$O/ ($\Gamma$) and r$\^$N/($\Gamma$) of rooted maps on orientable and non-orientable surfaces with underlying graph $\Gamma$ are found. Many closed formulas without sum ∑ for the number of rooted maps on surfaces (orientable or non-orientable) with given underlying graphs, such as, complete graph K$\_$n/, complete bipartite graph K$\_$m, n/ bouquets B$\_$n/, dipole Dp$\_$n/ and generalized dipole (equation omitted) are refound in this paper.