DOI QR코드

DOI QR Code

A CHARACTERIZATION OF Ck×(C*) FROM THE VIEWPOINT OF BIHOLOMORPHIC AUTOMORPHISM GROUPS

  • Published : 2003.05.06

Abstract

We show that if a connected Stein manifold M of dimension n has the holomorphic automorphism group Aut(M) isomorphic to $Aut(C^k {\times}(C^*)^{n - k})$ as topological groups, then M itself is biholomorphically equivalent to C^k{\times}(C^*)^{n - k}$. Besides, a new approach to the study of U(n)-actions on complex manifolds of dimension n is given.

Keywords

References

  1. P. Ahern and W. Rudin, Periodic Automorphisms of $C^n$, Indiana Univ. Math. J. 44 (1995), 287–303
  2. D. N. Akhiezer, Lie Group Actions in Complex Analysis, Aspects of Mathematics E 27, Vieweg, Braunschweig/Wiesbaden, 1995
  3. D. E. Barrett, E. Bedford, and J. Dadok, $T^n$-actions on holomorphically separable complex manifolds, Math. Z. 202 (1989), 65–82 https://doi.org/10.1007/BF01180684
  4. D. Burns, S. Shnider and R. O. Wells, On deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), 237–253 https://doi.org/10.1007/BF01390277
  5. R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the $\overline{\partial}$ equation, and stability of the Bergman kernel, Adv. Math. 43 (1982), 1–86. https://doi.org/10.1016/0001-8708(82)90028-7
  6. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, London, Toronto, Sydney and San Francisco, 1978
  7. A. V. Isaev, Characterization of $C^n$ by its automorphism group, Proc. Steklov Inst. Math. 235 (2001), 103–106.
  8. A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002), 1254–1279. https://doi.org/10.4153/CJM-2002-048-2
  9. W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43–70. https://doi.org/10.1007/BF01425490
  10. A. Kodama, Characterizations of certain weakly pseudoconvex domains $E({\kappa},{\alpha})$ in $C^n$, Tohoku Math. J. 40 (1988), 343–365.
  11. A. Kodama and S. Shimizu, A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, preprint, 2002
  12. S. G. Krantz, Determination of a domain in complex space by its automorphism group, Complex Variables 47 (2002), 215–223. https://doi.org/10.1080/02781070290001445
  13. N. G. Kruzhilin, Holomorphic automorphisms of hyperbolic Reinhardt domains, Math. USSR-Izv. 32 (1989), 15–38. https://doi.org/10.1070/IM1989v032n01ABEH000732
  14. I. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. Res. Inst. Math. Sci., Kyoto Univ. 4 (1968), 527–543
  15. R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1986
  16. S. Shimizu, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119–152 https://doi.org/10.2748/tmj/1178228082
  17. S. Shimizu, Automorphisms of bounded Reinhardt domains, Japan. J. Math. 15 (1989), 385–414.