• Title/Summary/Keyword: Automatic number plate recognition

Search Result 13, Processing Time 0.021 seconds

Automatic Recognition System for Number Plate of Car using Multi Neural Network (다중 신경망을 이용한 차량 번호판의 자동인식 시스템)

  • Park, S.H.;Choi, G.J.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • This paper presents the automatic recognition system for car number plate. In our country, two types of number plate pattern is used. The one is old type of number plate, the other is new type of number plate. To recognize both new and old type number plates, the system must have flexibility. Therefore, in this paper, automatic recognition system is developed by use of the neural network for good adaptation, good generalization, and modulation. And because the number plate is made of three codes, the multi neural network consists of three networks. Neural network is teamed by GDR(Generalized Delta learning Rule) and it is verified the effectiveness of the method through experimental results.

  • PDF

MATHEMATICAL IMAGE PROCESSING FOR AUTOMATIC NUMBER PLATE RECOGNITION SYSTEM

  • Kim, Sun-Hee;Oh, Seung-Mi;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.57-66
    • /
    • 2010
  • In this paper, we develop the Automatic Number Plate Recognition (ANPR) System. ANPR is generally composed of the following four steps: i) The acquisition of the image; ii) The extraction of the region of the number plate; iii) The partition of the number and iv) The recognition. The second and third steps incorporate image processing technique. We propose to resolve this by using Partial Differential Equation(PDE) based segmentation method. This method is computationally efficient and robust. Results indicate that our methods are capable to recognize the plate number on difficult situations.

A Study on improving the performance of License Plate Recognition (자동차 번호판 인식 성능 향상에 관한 연구)

  • Eom, Gi-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

The automatic recognition of the plate of vehicle using the correlation coefficient and hough transform (상관계수와 하프변환을 이용한 차량번호판 자동인식)

  • Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.511-519
    • /
    • 1997
  • This paper presents the automatic recognition algorithm of the license number in on vehicle image. The proposed algorithm uses the correlation coefficient and Hough transform to detect license plate. The m/n ratio reduction is performed to save time and memory. By the correlation coefficient between the standard pattern and the target pattern, licence plate area is roughly extracted. On the extracted local area, preprocessing and binarization is performed. The Hough transform is applied to find the extract outline of the plate. If the detection fails, a smaller or a larger standard pattern is used to compute the correlation coefficient. Through this process, the license plate of different size can be extracted. Two algorithms to each separate number are proposed. One segments each number with projection-histogram, and the other segments each number with the label. After each character is separated, it is recognized by the neural network. This research overlomes the problems in conventional methods, such as the time requirement or failure in extraction of outlines which are due to the processing of the entire image, and by processing in real time, the practical application is possible.

  • PDF

Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2 (YOLOv2 기반의 영상워핑을 이용한 강인한 오토바이 번호판 검출 및 인식)

  • Dang, Xuan-Truong;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.713-725
    • /
    • 2019
  • Automatic License Plate Recognition (ALPR) is a technology required for many applications such as Intelligent Transportation Systems and Video Surveillance Systems. Most of the studies have studied were about the detection and recognition of license plates on cars, and there is very little about detecting and recognizing license plates on motorbikes. In the case of a car, the license plate is located at the front or rear center of the vehicle and is a straight or slightly sloped license plate. Also, the background of the license plate is mainly monochromatic, and license plate detection and recognition process is less complicated. However since the motorbike is parked by using a kickstand, it is inclined at various angles when parked, so the process of recognizing characters on the motorbike license plate is more complicated. In this paper, we have developed a 2-stage YOLOv2 algorithm to detect the area of a license plate after detection of a motorbike area in order to improve the recognition accuracy of license plate for motorbike data set parked at various angles. In order to increase the detection rate, the size and number of the anchor boxes were adjusted according to the characteristics of the motorbike and license plate. Image warping algorithms were applied after detecting tilted license plates. As a result of simulating the license plate character recognition process, the proposed method had the recognition rate of license plate of 80.23% compared to the recognition rate of the conventional method(YOLOv2 without image warping) of 47.74%. Therefore, the proposed method can increase the recognition of tilted motorbike license plate character by using the adjustment of anchor boxes and the image warping which fit the motorbike license plate.

Novel License Plate Detection Method Based on Heuristic Energy

  • Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1114-1125
    • /
    • 2013
  • License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.

A Study on Recognition of Automobile Type and Plate Number Using Neural Network (신경회로망을 이용한 자동차 종류 및 차량번호 자동인식에 관한 연구)

  • Bae, Youn-Oh;Lee, Young-Jin;Chang, Yong-Hoon;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1107-1109
    • /
    • 1996
  • In this paper, we discuss the automatic recognition system of vehicle types and licence plate numbers using artificial neural networks, which will be used as vehicle identifier. We confine to expose the vehicle licence number for violating bus lane and stolen cars. Therefore, the vehicle height, width and distribution profile are used as the feature parameters of vehicle type. This system is composed of two parts: one is an image preprocessor of vehicle images and the other one is a pattern classifier by neural networks. The experimental results show that our method has good results for the recognition of vehicle types and numbers.

  • PDF

Implementation of Efficient Container Number Recognition System at Automatic Transfer Crane in Container Terminal Yard (항만 야드 자동화크레인(ATC)에서 효율적인 컨테이너번호 인식시스템 개발)

  • Hong, Dong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.57-65
    • /
    • 2010
  • This paper describes the method of efficient container number recognition in colored container image with number plate at ATC(Automatic Transfer Crane) in container terminal yard. At the Sinseondae terminal gate in Busan, the container number recognition system is installed by "intelligent port-logistics system technology development", that is government research and development project. It is the method that it sets up the tunnel structure inside camera on the gate and it recognizes the container number in order to recognize the export container cargo automatically. However, as the automation equipment is introduced to the container terminal and the unmanned of a task is gradually accomplished, the container number recognition system for the confirmation of the object of work is required at ATC in container terminal yard. Therefore, the container number recognition system fitted for it is necessary for ATC in container terminal yard in which there are many intrusive of the character recognition through image including a sunlight, rain, snow, shadow, and etc. unlike the gate. In this paper, hardware components of the camera, illumination, and sensor lamp were altered and software elements of an algorithm were changed. that is, the difference of the brightness of the surrounding environment, and etc. were regulated for recognize a container number. Through this, a shadow problem, and etc. that it is thickly below hung with the sunlight or the cargo equipment were solved and the recognition time was shortened and the recognition rate was raised.

Development of Real-Time Under Vehicle Inspection System Engine by Image Identification Event (영상 판독 이벤트 신호로 제어되는 실시간 차량하부 검사 시스템 엔진 개발)

  • Jeon, Ji-Hye;Yang, Ji-Hee;Jang, Ji-Woong;Park, Goo-Man
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.16-21
    • /
    • 2015
  • In this paper, we presented Under Vehicle Inspection System by comparing two image signals. Two signals are generated by license plate number and under-vehicle pattern recognition. The test shows reliable precision within real-time of 2.8sec, which can be applicable commercially. In the future, more research will be conducted to enhance the precision by automatic image balance in many challenging situations.

Isolating vehicle license plate area using the known information (사전정보를 이용한 차량번호판 영역의 분리)

  • 문기주;신영석;최효돈
    • Korean Management Science Review
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 1996
  • Two different methods to extract the license plate area of a vehicle have been used for automatic recognition purposes. One method is with a color vision system and the other is with an edge detecting operator. The system with color vision has some problems if the colors of license plate and vehicle's body are similar. The various plate colors in Korea also drops the system performance. The edge detecting operator also has a problem for a real time processing since it performs on all pixels of the scene. In this paper a possible method using gray level vision system and available pre-known information of license plates is suggested. The suggested procedure searches the lower boundary of the plate by counting high contrast points between one and near pixel from the bottom line of the scene. It finds the upper boundary from the bottom line by adding number plate height after finding the lower boundary. The left and right boundaries are found by similar processes.

  • PDF