• Title/Summary/Keyword: Automatic measurement system of weight

Search Result 32, Processing Time 0.022 seconds

Development of a Fruit Grader using Black/White Image Processing System(I) - Determining the Size and Coloration - (흑백영상처리장치를 이용한 과실선별기 개발에 관한 연구(I) - 크기 및 색택 판정 -)

  • Noh, S.H.;Lee, J.W.;Lee, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.354-362
    • /
    • 1992
  • This study was intended to examine feasibility of sizing and color grading of Fuji apple with black/white image processing system, to develop a device with which the whole surface of an apple could be captured by one camera, and to develop an algorithm for a high speed sorting. The results are summarized as follows : 1. The black/white image processing system used in this study showed a maximum error of 1.3% in area measurement with a reference figure while the focusing point of camera and location of the reference figure were changed within a certain range. 2. As the result of evaluating four automatic image segmentation algorithms with apple images, Histogram Clustering Method was the best in terms of computation time and accuracy. 3. The fast algorithm for analyzing size and coloration of apple was developed. 4. The whole surface of an apple could be captured in an image frame with two mirrors installed on the both sides of the sample. The total area of the image representing the whole surface showed a correlation of 0.995 with the weight of apple. 5. The gray level when a particular band pass filter was mounted on the camera showed high correlation with 'L' and 'a' values of Hunt color scale and could represent the coloration of apple.

  • PDF

A Study on the Development of a High Resolution Snow Gauge (정밀 강설량계 개발을 위한 연구)

  • Lee, Bu-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.270-274
    • /
    • 2006
  • This study proposes a new method for automatic recording of snowfall by a mass unit which is required in weather forecast and hydrology research. In this method the weight of a buoyancy bar submerged in a liquid is measured by a strain-gauge loadcell. Field test results of the strain-gauge loadcell showed good stability as well as high accuracy. Indoor tests of the instrument using a large tank of 120 cm diameter and 25 cm height connected to a small tank measured the liquid level with a good stability, showing a measurement error of less than 0.1 mm in a 100 mm range. This method of water depth measurement is very useful in measuring snowfall because it has no limitation on the funnel size of the instrument. In addition, an antifreezing solution instead of water used in the tank makes a heating system for melting snow unnecessary.

Operator Modeling and Design of Fuzzy Controller for a Wire-Driven Heavy Material Lifting System (와이어 구동식 중량물 권양 시스템을 위한 퍼지제어기 설계 및 작업자 모델링)

  • Song, Bo-Wei;Seo, Hyun-Duk;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.436-443
    • /
    • 2013
  • This paper presents design methods of a fuzzy controller and an operator model for a wire-driven heavy material lifting system helping human workers. The wire-driven heavy material lifting system is a kind of human-assistive systems in which a human is involved in the control loop. Thus, human's control characteristics and requirement of reducing worker's force to lift a heavy material are considered in the design process of the proposed fuzzy controller. An automatic weight measurement algorithm during the early stage of lifting is also introduced. Finally, the effectiveness and performance of the proposed system are proved by experiments.

Design of a Compact GPS/MEMS IMU Integrated Navigation Receiver Module for High Dynamic Environment (고기동 환경에 적용 가능한 소형 GPS/MEMS IMU 통합항법 수신모듈 설계)

  • Jeong, Koo-yong;Park, Dae-young;Kim, Seong-min;Lee, Jong-hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • In this paper, a GPS/MEMS IMU integrated navigation receiver module capable of operating in a high dynamic environment is designed and fabricated, and the results is confirmed. The designed module is composed of RF receiver unit, inertial measurement unit, signal processing unit, correlator, and navigation S/W. The RF receiver performs the functions of low noise amplification, frequency conversion, filtering, and automatic gain control. The inertial measurement unit collects measurement data from a MEMS class IMU applied with a 3-axis gyroscope, accelerometer, and geomagnetic sensor. In addition, it provides an interface to transmit to the navigation S/W. The signal processing unit and the correlator is implemented with FPGA logic to perform filtering and corrrelation value calculation. Navigation S/W is implemented using the internal CPU of the FPGA. The size of the manufactured module is 95.0×85.0×.12.5mm, the weight is 110g, and the navigation accuracy performance within the specification is confirmed in an environment of 1200m/s and acceleration of 10g.

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

Laver(Kim) Thickness Measurement and Control System Design (해태(김)두께측정 및 조절 장치 설계)

  • Lee, Bae-Kyu;Choi, Young-Il;Kim, Jung-Hwa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.226-233
    • /
    • 2013
  • In this study, In Laver's automatic drying device, laver thickness measurement and control devices that are associated with. Disconnect the water and steam, after put a certain amount of the mixture(water and laver) in the mold. In process, Laver of the size and thickness (weight) to determine, constant light source to detect and image LED Lamp occur Vision Sensor (Camera) prepare, then the values of these state of the image is transmitted in real time embedded computers. Built-in measurement and control with the purpose of the application of each of the channels separately provided measurements are displayed on a monitor, And servo signals sent to each of the channels and it become so set function should be. In this paper, the laver drying device, prior to the laver thickness measurement and control devices that rely on the experience of existing workers directly laver manually adjust the thickness of the lever, but the lever by each channel relative to the actuator by installing was to improve the quality. In addition, The effect of productivity gains and labor savings are.

Covariance Among Lactation Number, Growth Performance, Calving Interval, and Milk Yield in Holstein Dairy Cows in Korea

  • Kim, Tae-Il;Mayakrishnan, Vijayakumar;Baek, Kwang-Soo;Jeong, Ha-Yeon;Park, Boem-Young;Lim, Dong-Hyun
    • Journal of agriculture & life science
    • /
    • v.51 no.6
    • /
    • pp.137-144
    • /
    • 2017
  • A diverse of recommendation has been made for the structure and management of dairy cows, despite demanding research, the relationship between lactation number and various factors is yet to be established. The present study was aimed to investigate the covariance among lactation number, growth performance, calving interval, and milk production was considered to increase an efficiency of selection schemes and to manage more efficiently Holstein dairy cows that have been raised on small-scale family farms in Republic of Korea. For that purpose, the data were observed from 850 Holstein dairy cows, which a total of 3929 milking, since April 2016 - January 2017. We measured the body weight, height, age, calving interval, and milk production of the each dairy cow. Also, information about the date of lactation, calving interval, and milk production was recorded using an automatic milking system(AMS) with identification numbers. Milk production was calculated per udder quarter in the AMS. Our study results showed the increased average body weight(p>0.05) in 1, 2, 3, and $4^{th}$ lactating dairy cows and afterwards, we noticed the tendency on the average body weight(p<0.05) per lactation progressed. There was no significant difference noticed on height measurement of dairy cows. From the processing data of 850 Holstein dairy cows, the lactation number 1 and 7 had a greater calving interval with significantly lowered milk production, and the lactation number 2, 3, 4, 5, and 6 had significantly lowered the calving interval(p<0.05) with a greater milk production. From our study results, we evidenced that there is a significant relationship between the lactation number, growth performance, calving interval, and milk yield, and the maximum production of milk occurring in the $3^{rd}$ and $4^{th}$ lactation dairy cows. The achieved results from this study can be used by the small-scale farmers to encourage the structure and management of growth performance, calving interval, and milk yield in Holstein dairy cows in Korea.

Analysis of the growth environment and fruiting body quality of Pleurotus eryngii cultivated by Smart Farming (큰느타리(새송이)버섯 스마트팜 재배를 통한 생육환경 분석 및 자실체 품질 특성)

  • Kim, Kil-Ja;Kim, Da-Mi;An, Ho-Sub;Choi, Jin-Kyung;Kim, Seon-Gon
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.211-217
    • /
    • 2019
  • Currently, cultivation of mushrooms using the Information and Communication Technology (ICT)-based smart farming technique is increasing rapidly. The main environmental factors for growth of mushrooms are temperature, humidity, carbon dioxide (CO2), and light. Among all the mentioned factors, currently, only temperature has been maintained under automatic control. However, humidity and ventilation are controlled using a timer, based on technical experience.Therefore, in this study, a Pleurotus eryngii first-generation smart farm model was set up that can automatically control temperature, humidity, and ventilation. After installing the environmental control system and the monitoring device, the environmental condition of the mushroom cultivation room and the growth of the fruiting bodies were studied. The data thus obtained was compared to that obtained using the conventional cultivation method.In farm A, the temperature during the primordia formation stage was about 17℃, and was maintained at approximately 16℃ during the fruiting stage. The humidity was initially maintained at 95%, and the farm was not humidified after the primordia formation stage. There was no sensor for CO2 management, and the system was ventilated as required by observing the shape of the pileus and the stipe. It was observed that, the concentration of CO2 was between 700 and 2,500 ppm during the growth period. The average weight of the mushrooms produced in farm A was 125 g, and the quality was between that of the premium and the first grade.In farm B. The CO2 sensor was in use for measurement purposes only; the system was ventilated as required by observing the shape of the pileus and the stipe. During the growth period, the CO2 concentration was observed to be between 640 and 4,500 ppm. The average weight of the mushrooms produced in farm B was 102 g.These results indicate that the quality of the king oyster mushroom is determined by the environmental conditions, especially by the concentration of CO2. Thus, the data obtained in this study can be used as an optimal smart farm model, where, by improving the environmental control method of farm A, better quality mushrooms were obtained.

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.