• Title/Summary/Keyword: Automatic guided vehicle

Search Result 70, Processing Time 0.021 seconds

Position Detection Algorithm for Auto-Landing Containers by Laser-Sensor, Part I: 3-D Measurement (컨테이너의 자동랜딩을 위한 레이저센서 기반의 절대위치 검출 알고리즘: 3차원 측정 (Part I))

  • Hong, Keum-Shik;Lim, Sung-Jin;Hong, Kyung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.45-54
    • /
    • 2007
  • In the context of auto-landing containers from a container ship to a truck or automatic guided vehicle and vice versa, this research investigates three schemes, one in Part I and two in Part II, for measuring the absolute position of a container. Coordinate transformations between the reference-coordinate, sensor-coordinate, and body-coordinate systems are briefly discussed. The scheme explored in Part I aims the use of three laser-slit sensors, which are relatively inexpensive. In this case, nine nonlinear equations are formulated for six unknown variables (three for orientation and three for position), so a closed-form solution is not available. Instead, an approximate solution through linearization was derived. An advantage of the method in Part I is its ability to measure an absolute position in 3D space, while a disadvantage is the computation time required to obtain pseudo-inverses and the approximate nature of the obtained solution. Numerical examples are provided.

Homing Guidance Law and Spiral Descending Path Design for UAV Automatic Landing (무인항공기 자동착륙을 위한 나선형 강하궤적 및 종말유도 설계)

  • Yoon, Seung-Ho;Kim, H.-Jin;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • This paper presents a spiral descending path and a landing guidance law for net-recovery of a fixed-wing unmanned aerial vehicle. The net-recovery landing flight is divided into two phases. In the first phase, a spiral descending path is designed from an arbitrary initial position to a final approaching waypoint toward the recovery net. The flight path angle is controlled to be aligned to the approaching direction at the end of the spiral descent. In the second phase, the aircraft is guided from the approaching waypoint to the recovery net using a pseudo pursuit landing guidance law. Six degree-of-freedom simulation is performed to verify the performance of the proposed landing guidance law.

Design and Implementation of the Dual Motor Drive AGV Controller Using CPLD (CPLD를 이용한 이륜 속도차방식 AGV 제어기 설계 및 구현)

  • 진중호;백한석;한석붕
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.209-212
    • /
    • 2000
  • This paper describes the design and implementation of a hard- wired AGV controller using CPLD(Complex Programmable Logic Device). The proposed controller manages a guidance equipment, motor and I/O sequence controller for a self-control traveling. Compared with a conventional $\mu$-processor, the CPLD controller using a hard-wired control method can reduce a difficult programming process. Also, the total costs of production are reduced, such as development time, product's size and difficulty because memory, combinational logic and sequential logics are implemented by CPLD. The Controller designed using behavioral description method with VHDL and was synthesized by MAX+Plus II of the ALTERA co. We implemented controller using EPF10K10LC84-4 device.

  • PDF

Design and Implementation of Distributed Active Object System(DAOS) for Manufacturing Control Applications (공정 제어 응용을 위한 분산 능동 객체 시스템(DAOS)의 설계 및 구현)

  • Eum, Doo-Hun;Yoo, Eun-Ja
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.2
    • /
    • pp.141-150
    • /
    • 2001
  • Manufacturing conb'ol applications consist of concurrent active components such as robots, AGV's (Automatic Guided Vehicles), and conveyors. Running of manufacturing control programs is interactions among those components. We can enhance the productivity and extendability of manufacturing control applications by using the object-oriented teclmology that models those components as reusable objects. But the objects in current object-oriented technology that encapsulate state and behavior infonnation are passive in a sense that those respond only when messages are sent to them. In this paper, we introduce the Distributed Active Object Systems (DAGS) approach that SUPPOltS active objects. Since active objects encapsulate control infonnation in addition to state and behavior information under COREA/Java-based distributed environment, they can represent manufacturing control components better than the objects in ordimuy object-oriented technology. TIus control infonnation provides an object with a featme that can monitor its own status as well as other object's status connected by intelface valiables. Active objects can initiate a behavior according to the change of those status. Therefore, we can sb-uctmally assemble self-initiating active objects by using intelface variables to construct a system without describing bow to control distributed objects by using message passing. As the DAOS approach supports object composability, we can enhal1ce the productivity and extendability of disbibuted manufactming control applications even better than the ordil1alY object-oriented approach. Also, the DAOS approach supports better component reusability with active objects that encapsulate control information .

  • PDF

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.

A Development of 3D Simulator Program for Performance Valuation of Port Transportation Systems (항만이송시스템의 성능평가를 위한 3차원 시뮬레이터 개발)

  • Suh, Jin-Ho;Park, Sung-Chul;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.423-428
    • /
    • 2005
  • Due to the fast growing rate of the global container trade, every major port is under the pressure of meeting the projected capacity demand. As a result, alternative solutions have been sought for improving capacity and meeting the growing demand for container storage area and terminal capacity. Moreover, material handling process re-engineering is now a critical issue for logistics and supply chain managers of airline, shipping lines, terminal and warehousing enterprises around the world. Therefore, the purpose of this paper is to develop the 3D simulator for executing performance valuation of port transportation systems. The developed 3D simulator system is to measure the effectiveness of the proposed total system and compare it with existing practices. The performance analysis variables are also defined for these comparisons.

  • PDF

Implementation of an intelligent vision system for an adaptive path-planning of industrial AGV system (산업용 AGV 시스템의 적응적 경로설정을 위한 지능형 시각 시스템의 구현)

  • Ko, Jung-Hwan
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • In this paper, the intelligent vision system for an effective and intelligent path-planning of an industrial AGV system based on stereo camera system is proposed. The depth information and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the industrial AGV system and the obstacle detected and the 2D Path coordinates obtained from the location coordinates, and then the relative distance between the obstacle and the other objects obtained from them. The industrial AGV system move automatically by effective and intelligent path-planning using the obtained 2D path coordinates. From some experiments on AGV system driving with the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the objects is found to be very low value of 2.5% on average, respectably.

Study on Integrated Storage Systems for Automobile Production (자동차 생산을 위한 통합창고 연구)

  • Ok, Chang-Hun;Kim, Duk-Su;Gong, Jung-Su;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.91-101
    • /
    • 2012
  • Automobile manufacturing consists of body-line, painting-line, and assembly-line. These production lines are disposed in series and go through a flow process, so according to the status of pre & post processing, a suspension happens in a line by a starvation(impossibility of production by insufficient supply) or blocking(impossibility of production by exceed capacity). Therefore, to prevent a loss of production coming from a starvation or blocking, a storage such as WBS or PBS is independently owned and operated. The paper suggests the simulation model of integrated storage which can operate it by integrating each storage performing a role as a buffer of line. Specifically, the paper found the answers about reasonable number of Stacker Crane and AGV(Automatic Guided Vehicle) and suggested a methodology of operation which is available to operate them. Also, it compared an efficiency between a model of current storage and integrated storage through simulation. As a result, it turned out that the model suggested in the paper was more efficient on suspension of painting-line stop than a current storage.

A Study on Mobile Robot for Posture Control of Flexible Structures Using PI Algorithm

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • In this study, we propose a method for moving a device such as a flexible air sculpture while stably maintaining the user's desired posture. To accomplish this, a robot system with a structure of a mobile robot capable of running according to a given trajectory was studied by applying the PI algorithm and horizontal maintenance posture control using IMU. The air sculptures used in this study often use thin strings in a fixed posture. Another method is to put a load on the center of gravity to maintain the posture, and it is a system with flexibility because it uses air pressure. It is expected that these structures can achieve various results by combining flexible structures and mobile robots through the convergence process of digital sensor technology. In this study, posture control was performed by fusion of the driving technology of AGV(Automatic Guided Vehicle),, a field of robot, and technologies applying various sensors. For verification, the given performance evaluation was performed through an accredited certification test, and its validity was verified through an experiment.

Accuracy Improvement of Laser Navigation System using FIS and Reliability (FIS와 신뢰도를 이용한 레이저 내비게이션의 정밀도 향상)

  • Jung, Eun-Kook;Kim, Jung-Min;Jung, Kyung-Hoon;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.383-388
    • /
    • 2011
  • This paper presents to study the accuracy improvement of the laser navigation using FIS(fuzzy inference system) and the reliability. As wireless guidance system, the top-mounted laser with the laser navigation can rotate $360^{\circ}$ with phototransistor or other optical sensors that read the return signal from reflectors mounted at the perimeter of the workspace. The type of major existing guidance systems is a wire guidance system. Because they have high accuracy and fast response time, they are used to most industries. However, their installation cost is very expensive and maintenance is very difficult because their sensors are placed approximately 1 inch below the ground or embedded in the floor. To solve those problems, the laser navigation was developed as a wire guidance system. It does not need to reconstruct a floor or ground. And it can reduce costs of installation and maintenance because changing the layout is easy. However, it is difficult to apply to an industrial field because it is easily affected by disturbances which cause loss and damage of data, and has slow respond time. Therefore, we study the accuracy improvement of the laser navigation. The proposed method is a correction method using reliability of the laser navigation. here, reliability is calculated by FIS which is designed with the analyzed characteristics of the laser navigation. For performance comparison, we use original position data form the laser navigation and position data corrected by original reliability from the laser navigation. In experimental result, we verified that the performance of the proposed method compared the others is improved by about 50% or more.