• Title/Summary/Keyword: Automatic flight

Search Result 155, Processing Time 0.023 seconds

Predicting Parturition Time through Ultrasonic Measurement of Posture Changing Rate in Crated Landrace Sows

  • Wang, J.S.;Wu, M.C.;Chang, H.L.;Young, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.682-692
    • /
    • 2007
  • This study presents an automatic system to predict parturition time in the crated sows. The system relies on ultrasonic transducers mounted from above along the length of the crate. Using a 40 kHz time of flight (TOF) single envelope wave, the momentary distances between the sensors are measured. Therefore, the local momentary height of the sow and the momentary posture, i.e. standing posture (SDP), kneeling posture (KP), sitting posture (STP) and lateral lying posture (LLP) are determined. Crated sows change their postures from standing to lying and vice versa which follows a characteristic pattern. As parturition approaches, sows exhibit uneasiness, restlessness and the stand up sequence (SUS, the posture transition from LLP to SDP) rate increases because of labor pains. In time series, the SUS rate demonstrates a peak and it happens approximately 0-12 h before parturition. In this paper, the basic parturition threshold value method (BPTVM) and the same hour method (SHM) are proposed for predicting parturition, both of which are based on the SUS rate. The BPTVM mainly detects the peak of the SUS rate. As the SUS rate exceeds the threshold value, the parturition becomes predictable. Moreover, the SHM calculates the difference in the SUS rates between a particular time of day and the corresponding time of the preceding day. Compared to the BPTVM, the SHM can eliminate the circadian rhythm of the SUS rate influenced by feeding behavior. Using the SHM the parturition can be approximately predicted within hours. In an attempt to define the threshold parameters of predicting parturition, a data set with 32 sows of the SUS rate are used to estimate assumable predicting probability. The results show the assumable probability of the parturition prediction within 9 h is 96.9% for the SHM and 84.4% for the BPTVM. Moreover, the SHM can even reach a 75% probability of prediction within three hours of parturition. We conclude that the SHM is more accurate and is more useful for parturition time prediction. When parturition is detected, the proposed algorithm generates a warning signal which can inform human personnel to protect the mother and newborn piglets.

Estimation of Longitudinal Dynamic Stability Derivatives for a Tailless Aircraft Using Dynamic Mesh Method (Dynamic Mesh 기법을 활용한 무미익 비행체 종축 동안정 미계수 예측)

  • Chung, Hyoung-Seog;Yang, Kwang-Jin;Kwon, Ky-Beom;Lee, Ho-Keun;Kim, Sun-Tae;Lee, Myung-Sup;Reu, Taekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.232-242
    • /
    • 2015
  • For stealth performance consideration, many UAV designs are adopting tailless lambda-shaped configurations which are likely to have unsteady dynamic characteristics. In order to control such UAVs through automatic flight control system, more accurate estimation of dynamic stability derivatives becomes essential. In this paper, dynamic stability derivatives of a tailless lambda-shaped UAV are estimated through numerically simulated forced oscillation method incorporating dynamic mesh technique. First, the methodology is validated by benchmarking the CFD results against previously published experimental results of the Standard Dynamics Model(SDM). The dependency of initial angle of attack, oscillation frequency and oscillation magnitude on the dynamic stability derivatives of a tailless UAV configuration is then studied. The results show reasonable agreements with experimental reference data and prove the validity and efficiency of the concept of using CFD to estimate the dynamic derivatives.

Study on the Projectile Velocity Measurement Using Eddy Current Probe (와전류 탐촉자를 이용한 총구 탄속 측정에 관한 연구)

  • Shin, Jungoo;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.83-86
    • /
    • 2015
  • Nowadays the weapon systems are employed air bursting munition (ABM) as smart programmable 40 mm shells which have been developed in order to hit the target with programmed munition that can be air burst after a set distance in the battlefield. In order to improve the accuracy of such a bursting time, by measuring the speed of the munition from the barrel, weapon systems calculate the exact time of flight to the target and then the time information must be inputted to the munition. In this study, we introduce a device capable of detecting a shot at K4 40 mm automatic grenade. The shot is composed of a rotating copper band to convert linear motion into rotary motion when it passes through the barrel, the steel section is exert the effect of fragment and aluminum section to give fuze information. The aluminum section was used to detect munition using eddy current method. To measure muzzle velocity by means of non-contact method, two eddy current probes separated 10 cm was employed. Time interval between two eddy current probe detection times was used as muzzle velocity. The eddy current probe was fabricated U-shape Mn-Zn ferrite core with enamelled copper wire, and 200 kHz alternating current was used to detect inductance change. Measured muzzle velocity using the developed sensor was compared to the Doppler radar system. The difference was smaller than 1%.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Liability of the Compensation for Damage Caused by the International Passenger's Carrier by Air in Montreal Convention (몬트리올조약에 있어 국제항공여객운송인의 손해배상책임)

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.9-39
    • /
    • 2003
  • The rule of the Warsaw Convention of 1929 are well known and still being all over the world. The Warsaw Convention is undoubtedly the most widely accepted private international air law treaty with some 140 countries. In the international legal system for air transportation, the Warsaw Convention has played a major role for more than half century, and has been revised many times in consideration of the rapid developments of air high technology, changes of social and economic circumstances, need for the protection of passengers. Some amendments became effective, but others are still not effective. As a result, the whole international legal system for air transportation is at past so complicated and tangled. However, the 'Warsaw system' consists of the Warsaw Convention of 1929 the Guadalajara Convention of 1961, a supplementary convention, and the following six protocols: (1) the Hague Protocol of 1955, (2) the Guatemala Protocol of 1971, (3) the Montreal Additional Protocols, No.1, (4) the Montreal Additional Protocol No.2, (5) the Montreal Additional Protocol No.3, and (6) the Montreal Additional Protocol No.4. of 1975. As a fundamental principle of the air carrier's liability in the international convention and protocols, for instance in the Warsaw Convention and the Hague Protocol, the principle of limited liability and a presumed fault system has been adopted. Subsequently, the Montreal Inter-carrier Agreement of 1966, the Guatemala City Protocol, the Montreal Additional Protocol No.3, and the Montreal Additional Protocol No. 4 of 1975 maintained the limited liability, but substituted the presumed liability system by an absolute liability, that is, strict liability system. The Warsaw System, which sets relatively low compensation limits for victims of aircraft accidents and regulates the limited liability for death and injury of air passengers, had become increasingly outdated. Japanese Airlines and Inter-carrier Agreement of International Air Transport Association in 1995 has been adopted the unlimited liability of air carrier in international flight. The IATA Inter-Carrier Agreement, in which airlines in international air transportation agree to waive the limit of damages, was long and hard in coming, but it was remarkable achievement given the political and economic realities of the world. IATA deserves enormous credit for bringing it about. The Warsaw System is controversial and questionable. In order to find rational solution to disputes between nations which adopted differing liability systems in international air transportation, we need to reform the liability of air carriers the 'Warsaw system' and fundamentally, to unify the liability system among the nations. The International Civil Aviation Organization(ICAO) will therefore reinforce its efforts to further promote a legal environment that adequately reflects the public interest and the needs of the parties involved. The ICAO Study Group met in April, 1998, together with the Drafting Committee. The time between the "Special Group on the Modernization and Consolidation of the 'Warsaw system'(SGMW)" and the Diplomatic Conference must be actively utilized to arrange for profound studies of the outstanding issues and for wide international consultations with a view to narrowing the scope of differences and preparing for a global international consensus. From 11 to 28 May 1999 the ICAO Headquarters at Montreal hosted a Diplomatic Conference convened to consider, with a view to adoption, a draft Convention intended to modernize and to integrate replace the instruments of the Warsaw system. The Council of ICAO convened this Conference under the Procedure for the Adoption of International Conventions. Some 525 participants from 121 Contracting States of ICAO attended, one non-contracting State, 11 observer delegations from international organizations, a total of 544 registered participants took part in the historic three-week conference which began on 10 May. The Conference was a success since it adopted a new Convention for the Unification of Certain Rules for International Carriage by Air. The 1999 Montreal Convention, created and signed by representatives of 52 countries at an international conference convened by ICAO at Montreal on May 28, 1999, came into effect on November 4, 2003. Representatives of 30 countries have now formally ratified the Convention under their respective national procedures and ratification of the United States, which was the 30th country to ratify, took place on September 5, 2003. Under Article 53.6 of the Montreal Convention, it enters into force on the 60th day following the deposit of the 30th instrument of ratification or acceptation. The United States' ratification was deposited with ICAO on September 5, 2003. The ICAO have succeeded in modernizing and consolidating a 70-year old system of international instruments of private international law into one legal instrument that will provide, for years to come, an adequate level of compensation for those involved in international aircraft accidents. An international diplomatic conference on air law by ICAO of 1999 succeeded in adopting a new regime for air carrier liability, replacing the Warsaw Convention and five other related legal instruments with a single convention that provided for unlimited liability in relation to passengers. Victims of international air accidents and their families will be better protected and compensated under the new Montreal Convention, which modernizes and consolidates a seventy-five year old system of international instruments of private international law into one legal instrument. A major feature of the new legal instrument is the concept of unlimited liability. Whereas the Warsaw Convention set a limit of 125,000 Gold Francs (approximately US$ 8,300) in case of death or injury to passengers, the Montreal Convention introduces a two-tier system. The first tier includes strict liability up to l00,000 Special Drawing Rights (SDR: approximately US$ 135,000), irrespective of a carrier's fault. The second tier is based on presumption of fault of a carrier and has no limit of liability. The 1999 Montreal Convention also includes the following main elements; 1. In cases of aircraft accidents, air carriers are called upon to provide advance payments, without delay, to assist entitled persons in meeting immediate economic needs; the amount of this initial payment will be subject to national law and will be deductable from the final settlement; 2. Air carriers must submit proof of insurance, thereby ensuring the availability of financial resources in cases of automatic payments or litigation; 3. The legal action for damages resulting from the death or injury of a passenger may be filed in the country where, at the time of the accident, the passenger had his or her principal and permanent residence, subject to certain conditions. The new Montreal Convention of 1999 included the 5th jurisdiction - the place of residence of the claimant. The acceptance of the 5th jurisdiction is a diplomatic victory for the US and it can be realistically expected that claimants' lawyers will use every opportunity to file the claim in the US jurisdiction - it brings advantages in the liberal system of discovery, much wider scope of compensable non-economic damages than anywhere else in the world and the jury system prone to very generous awards. 4. The facilitation in the recovery of damages without the need for lengthy litigation, and simplification and modernization of documentation related to passengers. In developing this new Montreal Convention, we were able to reach a delicate balance between the needs and interests of all partners in international civil aviation, States, the travelling public, air carriers and the transport industry. Unlike the Warsaw Convention, the threshold of l00,000 SDR specified by the Montreal Convention, as well as remaining liability limits in relation to air passengers and delay, are subject to periodic review and may be revised once every five years. The primary aim of unification of private law as well as the new Montreal Convention is not only to remove or to minimize the conflict of laws but also to avoid conflict of jurisdictions. In order to find a rational solution to disputes between nations which have adopted differing liability systems in international air transport, we need fundamentally to reform their countries's domestic air law based on the new Montreal Convention. It is a desirable and necessary for us to ratify rapidly the new Montreal Convention by the contracting states of lCAO including the Republic of Korea. According to the Korean and Japanese ideas, airlines should not only pay compensation to passengers immediately after the accident, but also the so-called 'condolence' money to the next of kin. Condolence money is a gift to help a dead person's spirit in the hereafter : it is given on account of the grief and sorrow suffered by the next of kin, and it has risen considerably over the years. The total amount of the Korean and Japanese claims in the case of death is calculated on the basis of the loss of earned income, funeral expenses and material demage (baggage etc.), plus condolence money. The economic and social change will be occurred continuously after conclusion of the new Montreal Convention. In addition, the real value of life and human right will be enhanced substantially. The amount of compensation for damage caused by aircraft accident has increased in dollar amount as well as in volume. All air carrier's liability should extend to loss of expectation of leisure activities, as well as to damage to property, and mental and physical injuries. When victims are not satisfied with the amount of the compensation for damage caused by aircraft accident for which an airline corporation is liable under the current liability system. I also would like to propose my opinion that it is reasonable and necessary for us to interpret broadly the meaning of the bodily injury on Article 17 of the new Montreal Convention so as to be included the mental injury and condolence. Furthermore, Korea and Japan has not existed the Air Transport Act regulated the civil liability of air carrier such as Air Transport Act (Luftverkehrsgestz) in Germany. It is necessary for us to enact "the Korean Air Transport Contract Act (provisional title)" in order to regulate the civil liability of air carrier including the protection of the victims and injured persons caused by aircraft accident.

  • PDF