• Title/Summary/Keyword: Automatic collision avoidance

Search Result 73, Processing Time 0.022 seconds

Automatic collision avoidance algorithm based on improved artificial potential field method

  • Wang Zongkai;Im Namkyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.265-266
    • /
    • 2023
  • With the development of science and technology, various research on ship collision avoidance has also developed rapidly. The research and development of ship collision avoidance technology has also received high attention from many researchers. This paper proposes a new collision avoidance algorithm for ships based on the artificial force field collision avoidance method. Using the simulation platform, the simulation results show that ships can successfully avoid collision in open water under single ship and multi ship situations, and the research results are relatively ideal.

  • PDF

Enabling Vessel Collision-Avoidance Expert Systems to Negotiate

  • Hu, Qinyou;Shi, Chaojian;Chen, Haishan;Hu, Qiaoer
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.77-82
    • /
    • 2006
  • Automatic vessel collision-avoidance systems have been studied in the fields of artificial intelligence and navigation for decades. And to facilitate automatic collision-avoidance decision-making in two-vessel-encounter situation, several expert and fuzzy expert systems have been developed. However, none of them can negotiate with each other as seafarers usually do when they intend to make a more economic overall plan of collision avoidance in the COLREGS-COST-HIGH situations where collision avoidance following the International Regulations for Preventing Collisions at Sea(COLREGS) costs too much. Automatic Identification System(AIS) makes data communication between two vessels possible, and negotiation methods can be used to optimize vessel collision avoidance. In this paper, a negotiation framework is put forward to enable vessels to negotiate to optimize collision avoidance in the COLREGS-COST-HIGH situations at open sea. A vessel vector space is defined and therewith a cost model is put forward to evaluate the cost of collision-avoidance actions. Negotiations between a give-way vessel and a stand-on vessel and between two give-way vessels are considered respectively to reach overall low cost agreements. With the framework proposed in this paper, two vessels involved in a COLREGS-COST-HIGH situation can negotiate with each other to get a more economic overall plan of collision avoidance than that suggested by the traditional collision-avoidance expert systems.

  • PDF

Automatic Ship Collision Avoidance Algorithm based on Probabilistic Velocity Obstacle with Consideration of COLREGs (국제해상충돌예방규칙을 고려한 확률적 속도 장애물 기반의 선박 충돌회피 알고리즘)

  • Cho, Yonghoon;Han, Jungwook;Kim, Jinwhan;Lee, Philyeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • This study presents an automatic collision avoidance algorithm for autonomous navigation of unmanned surface vessels. The performance of the collision avoidance algorithm is heavily dependent on the estimation quality of the course and speed of traffic ships because collision avoidance maneuvers should be determined based on the predicted motions of the traffic ships and their trajectory uncertainties. In this study, the collision avoidance algorithm is implemented based on the Probabilistic Velocity Obstacle (PVO) approach considering the maritime collision regulations (COLREGs). In order to demonstrate the performance of the proposed algorithm, an extensive set of simulations was conducted and the results are discussed.

Automatic Ship Collision Avoidance in Narrow Channels through Curvilinear Coordinate Transformation (곡선좌표계 변환에 기반한 협수로에서 선박 자율 충돌회피)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.191-197
    • /
    • 2021
  • This study addresses autonomous ship collision avoidance in narrow channels using curvilinear coordinates. Navigation in narrow channels or fairways is known to be much more difficult and challenging compared with navigation in the open sea. It is not straightforward to apply the existing collision avoidance framework designed for use in the open sea to collision avoidance in narrow channels due to the complexity of the problem. In this study, to generalize the autonomous navigation procedure for collision avoidance in narrow channels, we introduce a curvilinear coordinate system for collision-free path planning using a parametric curve, B-spline. To demonstrate the feasibility of the proposed algorithm, ship traffic simulations were performed and the results are presented.

Automatic Control for Ship Collision Avoidance Support -3 (선박충돌회피지원을 위한 자동제어-3)

  • 임남균;박건일
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.129-134
    • /
    • 2004
  • Author presented some study with a title of "automatic control for ship collision avoidance system" in previous papers. The paper reported the tread of the study, un-sloved issues and outcome of the study. In this paper, some additional results will be reported. The first is the algorithm of avoidance of group ship that is one of the un-sloved issues. The algorithm is useful when a ship takes an avoiding action toward group fish boats and approaching group merchant vessel. The second is unified model for calculating ship collision risk. The collision risk changes with various meet type of ships. Therefor newly-developed model is suggested to take into account of these situations. Finally simulation is carried out to verify suggested algorithm and model in various ship encounter situations..

  • PDF

Control System for Ship Collision Avoidance considering the Effect of Wind and Ship's Manoeuvrability

  • Im, Nam-Kyun;Lee, Seung-Keon;Hwang, Seong-Joon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2010
  • The studies on automatic ship collision avoidance system, which have been carried out in the last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation field 3-4 years ago because of the absence of any tool to give other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the automatic ship collision avoidance support system which considers ship's manoeuvrability into it's collision avoidance algorithm. One of the important part in ship collision avoidance system is collision decision module which can calculate collision risk with other ships and act properly to avoid the situation. Many of previous researches are using present ship's dynamic data such as present speed, position and course to calculate collision risk. However when a ship commences avoidance action, the real situation is quite different with one that has been estimated by the ship's initial data due to the ship's manoeuvring characteristic. Therefore it is better to take into account ship's manoeuvring characteristic from the stage of collision decision in ship collision avoidance system. In this study, these effects are included in the developed system. The proposed system are verified its usefulness in numerical simulation environments.

Automatic Control for Ship Automatic Collision Avoidance Support (선박자동충돌회피지원을 위한 자동제어)

  • 임남균
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.81-86
    • /
    • 2003
  • The studies on automatic ship collision avoidance system, which have been carried out last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation 3-4 years ago because of the absence of the tool to get other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the algorithm of automatic ship collision support system. The NOMOTO ship's mathematic model is adopted in simulation for its simplicity. The fuzzy reason rules are used for course-keeping system and for the calculation of Collision Risk using TCPA/DCPA. Moreover‘encounter type’ between two ships is analyzed based on Regulations for Preventing Collisions at Sea and collision avoidance action is suggested, Some situations are simulated to verity the developed algorithm and appropriate avoidance action is shown in the simulation.

  • PDF

New idea about realizing automatic collision avoidance on the sea

  • Yao, Jie;Wu, Zhaolin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.65-74
    • /
    • 2001
  • The rapid development of computer technology and widely application of artificial intelligent provide technology support for realizing navigation automation on the sea. which has achieved great success in shipping advanced countries like japan, England, America, Germany and also in the developing country, China. However, it still remains in the studying Period up to now in aspects of collision avoidance decision-making mathematical model and reasoning mechanism. In this paper, approaches are proposed to establish the collision avoidance automation system. One of them is based on the former studies to realize automation system by make use of finite state machine theory and following the International regulations for Preventing Collision at Sea, 1972. The others are to establish the new idea about automatic collision avoidance system by taking advantage of the free flight idea, hybrid system, game theory used in air traffic management studies in recent years and the common characteristics in both air and sea traffic management.

  • PDF

Automatic Control for Ship Collision Avoidance Support System (선박충돌회피지원 시스템을 위한 자동제어)

  • Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.375-381
    • /
    • 2003
  • The studies on automatic ship collision avoidance system, which have been carried out last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation 3-4 years ago because of the absence of the tool to get other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the algorithm of automatic ship collision support system. The NOMOTO ship's mathematic model is adopted in simulation for its simplicity. The fuzzy reason rules are used for course-keeping system and for the calculation of Collision Risk using TCPA/DCPA. Moreover ‘encounter type’ between two ships is analyzed based on Regulations for Preventing Collisions at Sea and collision avoidance action is suggested. Some situations are simulated to verity the developed algorithm and appropriate avoidance action is shown in the simulation.

Automatic Control for Ship Collision Avoidance Support-III (선박충돌회피지원을 위한 자동제어-III)

  • Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.475-480
    • /
    • 2004
  • Author presented some study with regard to “automatic control for ship collision avoidance system” before. Those papers are to deal with unsolved problem,; in the previous study. In this paper, two issues relating to ship collision avoidance were investigated. One is to suggest a new algorithm of avoidance of a group ship. This algorithm is useful when a ship takes avoiding action for a group fish boats and a group of merchant vessels. In the stage of taking avoidance action, newly-developed algorithm was used. the other is to develop a unified model of collision risk. Generally collision risk changes according to various type of encounters. The new model is to take into account of these situations. The above-mentioned algorithm and model were verified through simulation under various encounters between ships.