• Title/Summary/Keyword: Automatic Recovery

Search Result 119, Processing Time 0.023 seconds

A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery (항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

A Study on Design and Validation of Pilot Activated Recovery System to Recover Aircraft Abnormal Attitude, Altitude and Speed (항공기 비정상 자세, 고도 및 속도 회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1302-1312
    • /
    • 2008
  • Relaxed Static Stability(RSS) has been applied to improve flight performance of modern version supersonic jet fighters. Flight control systems are necessary to stabilize an unstable aircraft and to provide adequate handling qualities. Also, flight control systems of modern aircraft employ many safety measure to cope with emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes, speed and altitude. This paper addresses the concept of PARS with AARS(Automatic Attitude Recovery System), ATCS(Automatic Thrust Control System) and MARES(Minimum Altitude Recovery Estimation System), and this control law is designed by nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by real-time pilot evaluation using an HQS(Handling Quality Simulator). The result of evaluation reveals that the these systems support recovery of an aircraft unusual attitude and speed, and improve a safety of an aircraft.

Development of Gravity-induced Loss of Consciousness(GLOC) Monitoring System and Automatic Recovery System (중력 가속도로 인한 의식상실 감지 및 자동 회복 시스템 개발)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Kang, Im-Ju;Jang, Soon-Ryong;Kim, Kwang-Yun;Park, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.704-713
    • /
    • 2011
  • For many years, many pilots lost their lives and aircrafts due to GLOC(Gravity-induced Loss Of Consciousness). Due to the emergence of high-gravity maneuvering aircraft such as the F-16, F-15 and T-50, the automatic GLOC detection and recovery systems are necessary to increase the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering. This paper addresses the design of GLOC detection, warning and recovery algorithm based on a model of supersonic jet trainer. The system is solely controlled by the pilot's control input (i.e., control stick force) and aircraft status such as attitude, airspeed, altitude and so forth. And, moreover, it does not depend upon any pilot physiological condition. The test evaluation results show that the developed system supports the recovery of an aircraft from the unusual aircraft attitude and improves the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering.

A Study on the Design and Validation of Automatic Pitch Rocker for the Aircraft Deep Stall Recovery (항공기의 실속 회복을 위한 자동 회복 장치 설계 및 검증에 관한 연구)

  • Hahn, Seong-Ho;Hwang, Byung-Moon;Lee, Young-Ho;Lee, Dong-Kyu;Ahn, Sung-Jun;Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). Limit value of aircraft entering into the departure in HAoA is related to aircraft configuration design. But, the control law such as AoA and yaw-rate limiter is implemented in digital Fly-By-Wire flight control system of supersonic jet fighter to guarantee the aircraft's safety in HAoA. The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist AoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. This paper addresses the design and validation of APR(Automatic Pitch Rocker) control law instead of MPO in order to automatic recovery without manual pitch rocking by the pilot. And, recovery characteristic with APR verifies by the nonlinear analysis and pilot evaluation.

The Cost Analysis of Network by The Function of Automatic Link Recovery (자동링크복구 기능에 따른 네트워크 비용분석)

  • Song, Myeong-Kyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.439-444
    • /
    • 2015
  • The Social infrastructure systems such as communication, transportation, power and water supply systems are now facing various types of threats including component failures, security attacks and natural disasters, etc. Whenever such undesirable events occur, it is crucial to recover the system as quickly as possible because the downtime of social infrastructure causes catastrophic consequences in the society. Especially when there is a network link-failure, we need an automatic link-recovery method. This means that customers are aware of network failures that can be recovered before you say that service. In this paper, we analysis the relation between Auto-recovery performance and cost.

A study on an error recovery expert system as a part of man-robot system (Man-robot system의 일환으로서 에러회복 전문가시스템에 관한 연구)

  • 이순요;김창대
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.518-523
    • /
    • 1988
  • A Teaching and Operating Expert System (TOES) was designed in order to perform a task effectively which is inaccessible to man. Once an error occurs in the middle of the task operation, the automatic mode is converted into a manual mode. After recovering the error by the manual mode, the manual mode should be converted into the automatic mode. It was necessary to improve the manual mode in order to increase the availability of a man-robot system, a part of the human interface technique. Therefore, the Error Recovery Expert System must be constructed and developed.

  • PDF

A study on a design of developed-ERES/WCS using the ASR and fuzzy set theory as a part of human interface technique (Human interface 기술의 일환으로서 ASR과 fuzzy set theory를 이용한 developed-ERES/WCS 설계에 관한 연구)

  • 이순요;이창민;박세권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.76-81
    • /
    • 1988
  • As a means of human interface, this study designs Developed-ERES/WCS with voice recognition capability and fuzzy set theory. In the advanced teleoperator system, when an error occurs on the automatic mode, the error is recovered after the automatic mode is changed into the manual mode intervened by a human. The purpose of this study is to reduce human work load and to shorten error recovery time during error recovery.

  • PDF

A Study on the Design and Validation of Pilot Activated Recovery System to Recovery of an Aircraft Unusual Attitude (항공기 자세회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Kang, Im-Ju;Hur, Gi-Bong;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.307-317
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modem version supersonic jet fighter aircraft. Therefore, flight control system are necessary to stabilize an unstable aircraft and provides adequate handling qualities. Also, flight control systems of modem version aircraft employ a safety system to support emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. Therefore, automatic recovery system is necessary. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes. This paper addresses the concept of PARS and designed using nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by nonlinear analysis and real-time pilot evaluation using in-house software. The result of evaluation reveals that the PARS support recovery of an aircraft unusual attitude and improve a safety of an aircraft.

Automatic Recovery and Reset Algorithms for System Controller Errors

  • Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.89-96
    • /
    • 2020
  • Solar lamp systems may not operate normally in the event of some system or controller failure due to internal or external factors, in which case secondary problems occur, which may cost the system recovery. Thus, when these errors occur, a technology is needed to recover to the state it was in before the failure occurred and to enable re-execution. This paper designs and implements a system that can recover the state of the system to the state prior to the time of the error by using the Watchdog Timer within the controller if a software error has occurred inside the system, and it also proposes a technology to reset and re-execution the system through a separate reset circuit in the event of hardware failure. The proposed system provides stable operation, maintenance cost reduction and reliability of the solar lamp system by enabling the system to operate semi-permanently without external support by utilizing the automatic recovery and automatic reset function for errors that occur in the operation of the solar lamp system. In addition, it can be applied to maintain the system's constancy by utilizing the self-operation, diagnosis and recovery functions required in various high reliability applications.

Automatic Landing Guidance Law Design for Unmanned Aerial Vehicles based on Pursuit Guidance Law (추적유도기법 기반 무인항공기 자동착륙 유도법칙 설계)

  • Yoon, Seung-Ho;Bae, Se-Lin;Han, Young-Soo;Kim, Hyoun-Jin;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1253-1259
    • /
    • 2008
  • This paper presents a landing controller and guidance law for net-recovery of fixed-wing unmanned aerial vehicles. A linear quadratic controller was designed using the system identification result of the unmanned aerial vehicle. A pursuit guidance law is applied to guide the vehicle to a recovery net with imaginary landing points on the desired approach path. The landing performance of a pure pursuit guidance, a constant pseudo pursuit guidance, and a variable pseudo pursuit guidance is compared. Numerical simulation using an unmanned aerial vehicle model was performed to verify the performance of the proposed landing guidance law.