• Title/Summary/Keyword: Automatic Precision Landing

Search Result 9, Processing Time 0.026 seconds

Automatic Landing System of Container Spreader (컨테이너 스프레더의 자동 랜딩 시스템)

  • 박경택;박찬훈;박영근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1688-1692
    • /
    • 2003
  • The automatic Landing system is used for the automatic functions of automatic transfer crane in the automated container terminal. It confirms and adjusts the alignment and pose between spreader and container and accomplishes the automatic loading/unloading job of containers in yard. Specially, it is required in the automated container terminal and is well adapted under the coarse external environments. This system used the laser sensors to recognize the alignment between spreader and container. In this paper the algorithm of recognition of the alignment and pose is presented and the result of its simulation is shown.

  • PDF

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

Experiments of RTK based Precision Landing for Rotary Wing Drone (RTK를 이용한 회전익 드론 정밀 착륙 실험)

  • Young-Kyu Kim;Jin-Woung Jang;Jong-Hee Lee;Jong-Ho Yoo;Seungh Hyun Paik;Dae-Nyeon Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2023
  • Unmanned drone stations for automatic charging have been developed in order to overcome the flying time limitation of rotary wing drones. Since the drone stations is an unmanned operating system, each of the drones will be required to have a high degree of landing accuracy. Drone precision landing has been mainly studied depended on image processing technologies, but the image processing systems make several problems, such as the mission weight, the drone cost, and the development complexity increases, and the flight time decrease. Thus, this paper researched accuracy of precision landing based on RTK (real time kinetics) for rotary wing drones. For the experiments of RTK based precision landing, a drone repeatedly performed three missions. The survey accuracies of the RTK about missions respectively were set as 0.3, 0.2, and 0.1 meters. Each mission has one take-off point, two way-points and one landing-point, and was repeated ten times. The experiment results revealed landing error distance means of around 0.258, 0.12 and 0.057 meters on each of RTK setting.

A Study on Automatic Precision Landing for Small UAV's Industrial Application (소형 UAV의 산업 응용을 위한 자동 정밀 착륙에 관한 연구)

  • Kim, Jong-Woo;Ha, Seok-Wun;Moon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.27-36
    • /
    • 2017
  • In almost industries, such as the logistics industry, marine fisheries, agriculture, industry, and services, small unmanned aerial vehicles are used for aerial photographing or closing flight in areas where human access is difficult or CCTV is not installed. Also, based on the information of small unmanned aerial photographing, application research is actively carried out to efficiently perform surveillance, control, or management. In order to carry out tasks in a mission-based manner in which the set tasks are assigned and the tasks are automatically performed, the small unmanned aerial vehicles must not only fly steadily but also be able to charge the energy periodically, In addition, the unmanned aircraft need to land automatically and precisely at certain points after the end of the mission. In order to accomplish this, an automatic precision landing method that leads landing by continuously detecting and recognizing a marker located at a landing point from a video shot of a small UAV is required. In this paper, it is shown that accurate and stable automatic landing is possible even if simple template matching technique is applied without using various recognition methods that require high specification in using low cost general purpose small unmanned aerial vehicle. Through simulation and actual experiments, the results show that the proposed method will be made good use of industrial fields.

Development and performance evaluation of GPS/PL simulator for UAV landing (무인항공기 착륙용 GPS/PL 시뮬레이터 설계 및 성능 평가)

  • Lee, Geon-Woo;Kim, Yong-Hyun;Choi, Jin-Gyu;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Automatic landing performance of UAV can be enhanced by adding Pseudolite(PL) to GPS. However, it is very hard to install and operate PL with confidence because GPS satellites are moving and the landing zone are usually changeable. The coverage and accuracy of combined GPS and PL can be estimated by using simulator and the correct information is very crucial to UAV operation. In this paper, design, implementation and evaluation of GPS/PL simulator for UAV landing are given. A very realistic coverage estimation is obtained using GIS data and ray launching method with considerations of the transmitter power level, altitude of UAV, number and location of PL. The expected accuracy is estimated using DOP and NSP computed using both GPS and PL. The performance of simulator is evaluated by comparing with the results of a real GPS receiver, and the certified simulator shows the required accuracy for UAV landing can be easily met by proper installation of at least 2 PLs.

Detection of Moving Position of AGV Using Rotating LSB(Laser Slit Beam) (회전 레이져 슬릿 빔을 이용한 AGV 이동위치 검출)

  • Kim, Seon-Ho;Park, Gyeong-Taek;Park, Geon-Guk;An, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.137-144
    • /
    • 2001
  • The major movement blocks of the container are the range between the apron and the designation points on yard in container terminals. The yard tractor drived by operator takes charge of it's movement in conventional container terminals. In automated container terminal, AGV(automatic guided vehicle) takes charge of a yard tractor's role and information of navigation path are ordered from upper control system. The automated container terminal facilities must have the docking system that guides landing zinc to execute high speed travelling and precision positioning. This paper describes the new docking method with the rotating LSB(laser slit beam) generator and two pair of photo receiver. The LSB generator is installed on the fixed ground and the photo receiver is implemented on the moving vehicle such as AGV. The proposed docking system is implemented to confirm it's function and accuracy. The accuracy of measured moving position is represented in ±5mm at 1 data sampling.

  • PDF

The Deviation Distribution of Target on the ILS Final Approach Segment Using ADS-B Message (ADS-B 신호를 이용한 ILS 최종접근 구간의 항공기 항적 이격 분포 도출)

  • Ku, SungKwan;Lee, Young-Jong;Shin, DaiWon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.403-410
    • /
    • 2015
  • ADS-B can provide high accurate position information and faster update rate than Radar system and it is a technique that can supplement or replace the Radar. Recently ADS-B has been applied to the actual aircraft operation because to increase air transportation traffic and required to high accurate surveillance. In this study, we surveyed analysis of position deviation distribution analysis and received actual ADS-B trajectory data for conformed precise surveillance on the near airport area using ADS-B message. For that, we received the precision instrument approach ADS-B trajectory data using instrument landing system, and can analyse about target deviation distribution on the final approach segment about precision instrument approach. The result of analysis is mean distance of target deviation -0.04 m and standard deviation 6.71 m on between ADS-B target and extended runway centerline. Also that is to conformed the ADS-B message trajectory available to provide relatively exact surveillance information.

Verification of Automatic PAR Control System using DEVS Formalism (DEVS 형식론을 이용한 공항 PAR 관제 시스템 자동화 방안 검증)

  • Sung, Chang-ho;Koo, Jung;Kim, Tag-Gon;Kim, Ki-Hyung
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • This paper proposes automatic precision approach radar (PAR) control system using digital signal to increase the safety of aircraft, and discrete event systems specification (DEVS) methodology is utilized to verify the proposed system. Traditionally, a landing aircraft is controlled by the human voice of a final approach controller. However, the voice information can be missed during transmission, and pilots may also act improperly because of incorrectness of auditory signals. The proposed system enables the stable operation of the aircraft, regardless of the pilot's capability. Communicating DEVS (C-DEVS) is used to analyze and verify the behavior of the proposed system. A composed C-DEVS atomic model has overall composed discrete state sets of models, and the state sequence acquired through full state search is utilized to verify the safeness and the liveness of a system behavior. The C-DEVS model of the proposed system shows the same behavior with the traditional PAR control system.

Creation of 3D Maps for Satellite Communications to Support Ambulatory Rescue Operations

  • Nakajima, Isao;Nawaz, Muhammad Naeem;Juzoji, Hiroshi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • A communications profile is a system that acquires information from communication links to an ambulance or other vehicle moving on a road and compiles a database based on this information. The equipment (six sets of HDTVs, fish-eye camera, satellite antenna with tracking system, and receiving power from the satellite beacon of the N-star) mounted on the roof of the vehicle, image data were obtained at Yokohama Japan. From these data, the polygon of the building was actually produced and has arranged on the map of the Geographical Survey Institute of a 50 m-mesh. The optical study (relationship between visibility rate and elevation angle) were performed on actual data taken by fish-eye lens, and simulated data by 3D-Map with polygons. There was no big difference. This 3D map system then predicts the communication links that will be available at a given location. For line-of-sight communication, optical analysis allows approximation if the frequency is sufficiently high. For non-line-of-sight communication, previously obtained electric power data can be used as reference information for approximation in certain cases when combined with predicted values calculated based on a 3D map. 3D maps are more effective than 2D maps for landing emergency medical helicopters on public roadways in the event of a disaster. Using advanced imaging technologies, we have produced a semi-automatic creation of a high-precision 3D map at Yokohama Yamashita Park and vicinity and assessed its effectiveness on telecommunications and ambulatory merits.