• 제목/요약/키워드: Automatic Mesh Generation Method

Search Result 95, Processing Time 0.027 seconds

Automatic Mesh Generation on Poorly Parameterized NURBS Surfaces (불균일한 매개변수로 정의된 NURBS 곡면에서의 요소망 자동 생성)

  • 채수원;박정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.189-196
    • /
    • 2003
  • The NURBS surfaces are widely employed for exchanging geometric models between different CAD/CAE systems. However if the input NURBS surfaces are poorly parameterized, most surface meshing algorithms may fail or the constructed meshes can be ill-conditioned. In this paper presents a new method is presented that can generate well conditioned meshes even on poorly parameterized NURBS surfaces by regenerating NURBS surfaces. To begin with, adequate points are sampled on original poorly parameterized surfaces and new surfaces are created by interpolating these points. And then, mesh generation is performed on new surfaces. With this method, models with poorly parameterized NURBS surfaces can be meshed successfully.

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Parametric Study on Bellows of Piping System Using Fuzzy Theory

  • Lee Yang-Chang;Lee Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

AUTOMATED ADAPTIVE TETRAHEDRAL ELEMENT GENERATION FOR THREE-DIMENSIONAL METAL FORMING SIMULATION (삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성)

  • Lee M. C.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.203-208
    • /
    • 2005
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is developed for finite element simulation of three dimensional bulk metal forming processes. During the simulation, the finite element mesh system is adaptively remeshed whenever the mesh is unacceptable. Several schemes are developed such as curvature compensation scheme to minimize volume loss, optimal smoothing scheme to improve element quality, etc. The presented approach is evaluated and applied to automatic forging simulation in order to demonstrate the effect of the developed schemes.

  • PDF

Automatic Tetrahedral Mesh Generation Using Advancing Front Technique with Node Searching (절점 탐색이 적용된 전진경계법에 의한 사면체 요소망의 자동생성)

  • 전성재;채수원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.91-99
    • /
    • 2004
  • An unstructured tetrahedral mesh generation algorithm has been presented. In order to construct better meshes in interior region by using an advancing front technique, a connecting operator and a local finishing operator II have been developed in addition to the existing operators. Before applying digging operators that generate new nodes inside of a meshing region, a connecting operator is employed that uses existing nodes which satisfy certain conditions for producing well-conditioned elements. The local finishing operator II is introduced to terminate the meshing process more flexibly on remaining subregions. With these new operators, tetrahedral meshing process becomes more robust and good quality of meshes are constructed.

Analysis of large welded structures by using an automatic mesh generation (자동 요소 생성법을 이용한 대형 용접구조물의 해석)

  • 양영수;이세환
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.98-105
    • /
    • 1998
  • The accuracy of the finite element method depends upon the mesh that is used in the analysis. The temperature around the arc is higher than the melting point of the materials, and it drops sharply in the regions just away from the arc. This requires an extremely fine mesh in the confined high temperature region to predict the temperature accurately in that region. But the computational time increases with the fineness of mesh. Since fine mesh is required only around the arc source, adaptivity of the input mesh according to the position of the arc source is efficient. The remeshing technique gives a fine mesh in the high temperature region around the arc and a coarse mesh in other region at any time step. With this it is possible to achieve desired accuracy with less computation time. In this study a transient adaptive mesh, remeshing technique, is developed and calculated temperature for a sample problem.

  • PDF

Analysis of Using Geometry-based Adaptive Octree Method (Geometry-based Adaptive Octree 방법에 대한 고찰)

  • Park Jong-Ryoul;Sah Jong-Youb
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.86-91
    • /
    • 2000
  • Automatic method for generation of mesh and three dimension natural convection flow result adapted by this method are presented in this paper. It lake long time to meshing com plex 3-D geometries, and It's difficult to clustering grid at surface boundary. Octree structure resolve this difficulty.

  • PDF

Automatic Tetrahedral Mesh Generation using Advancing Front Technique with Delaunay Node Searching (전진경계법에서 Delaunay 탐색조건을 이용한 사면체 요소망의 자동 생성)

  • 전성재;채수원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1605-1608
    • /
    • 2003
  • A unstructured tetrahedral mesh generation algorithm has been presented. To make better meshes in interior region using an advancing front technique, a connecting operator has been developed in addition to the existing operators. Before applying digging operators that generate new nodes inside of a meshing region, a connecting operator is employed that uses existing nodes which satisfy certain conditions for producing well-conditioned elements if possible. By introducing this new operator, tetrahedral meshing process becomes more robust and produces better quality of meshes.

  • PDF

Automatic Three Dimensional Mesh Generation using Delaunay's Triangulation (Delaunay's 삼각화를 이용한 3차원 자동요소분할)

  • 김형석;정현교;이기식;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.847-853
    • /
    • 1988
  • A method of three-demensional finite element mesh generation is presented in this paper. This method is based on the Delaunay's triangulation whose dual is Voronoi's diagram. A set of points is given on the boundary surface of the concerning domain and the initial tetrahedra are generated by the given set of points. Then, the quality of every tetrahedron is investigated and the interior points are generated near the tetrahedra which are inferior in quality and the tetrahedra of good quality can be controlled by the density of the initial boundary points. Regions with different material constant can be refined in tetrahedra respectively. To confirm the effectiveness of this algorithm,the total volume of tetrahedra was compared to the true volume and this mesh generator was applied to a three-dimensional electostatic problem.

  • PDF

STUDY ON 3-D VIRTUAL REALITY FOR STEREOSCOPIC VISUALIZATION ON THE WEB (웹 환경에서의 입체적 가시화를 위한 3-D 가상현실 기법의 적용)

  • Lee, J.H.;Park, Y.C.;Kim, J.H.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • In this paper, our effort to apply 3-D Virtual Reality system for stereoscopic visualization of mesh data on the web is briefly described. This study is an extension of our previous and on-going research efforts to develop an automatic grid generation program specialized for wing mesh, named as eGWing. The program is developed by using JAVA programming language, and it can be used either as an application program on a local computer or as an applet in the network environment. In this research advancing layer method(ALM) augmented by elliptic smoothing method is used for the structured grid generation. And to achieve a stereoscopic viewing capability, two graphic windows are used to render its own viewing image for the left and right eye respectively. These two windows are merged into one image using 3D monitor and the viewers can see the mesh data visualization results with stereoscopic depth effects by using polarizing glasses. In this paper three dimensional mesh data visualization with stereoscopic technique combined with 3D monitor is demonstrated, and the current achievement would be a good start-up for further development of low-cost high-quality stereoscopic mesh data visualization system which can be shared by many users through the web.