• Title/Summary/Keyword: Automatic Measurement

Search Result 1,014, Processing Time 0.026 seconds

2D/3D Visual Optical Inspection System for Quad Chip (Quad Chip 외관 불량 검사를 위한 2D/3D 광학 시스템)

  • Han, Chang Ho;Lee, Sangjoon;Park, Chul-Geon;Lee, Ji Yeon;Ryu, Young-Kee;Ko, Kuk Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.684-692
    • /
    • 2016
  • In the manufacturing process of the LQFP/TQFP (Low-profile Quad Flat Package/Thin Quad Flat Package), the requirement of a 3 dimensional inspection is increasing rapidly and a 3D inspection of the shape of a chip has become an important report of quality control. This study developed a 3 dimensional measurement system based on PMP (Phase Measuring Profilometry) for an inspection of the LQFP/TQFP chip and image processing algorithms. The defects of the LQFP/TQFP chip were classified according to the dimensions. The 2 dimensional optical system was designed by the dorm illumination to achieve constant light distribution, In the 3 dimensional optical system, PZT was used for moving 90 degree in phase. The problem of 2 ambiguity was solved from the measured moir? pattern using the ambiguity elimination algorithm that finds the point of ambiguity and refines the phase value. The proposed 3D measurement system was evaluated experimentally.

Personal Information Detection by Using Na$\ddot{i}$ve Bayes Methodology (Na$\ddot{i}$ve Bayes 방법론을 이용한 개인정보 분류)

  • Kim, Nam-Won;Park, Jin-Soo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.91-107
    • /
    • 2012
  • As the Internet becomes more popular, many people use it to communicate. With the increasing number of personal homepages, blogs, and social network services, people often expose their personal information online. Although the necessity of those services cannot be denied, we should be concerned about the negative aspects such as personal information leakage. Because it is impossible to review all of the past records posted by all of the people, an automatic personal information detection method is strongly required. This study proposes a method to detect or classify online documents that contain personal information by analyzing features that are common to personal information related documents and learning that information based on the Na$\ddot{i}$ve Bayes algorithm. To select the document classification algorithm, the Na$\ddot{i}$ve Bayes classification algorithm was compared with the Vector Space classification algorithm. The result showed that Na$\ddot{i}$ve Bayes reveals more excellent precision, recall, F-measure, and accuracy than Vector Space does. However, the measurement level of the Na$\ddot{i}$ve Bayes classification algorithm is still insufficient to apply to the real world. Lewis, a learning algorithm researcher, states that it is important to improve the quality of category features while applying learning algorithms to some specific domain. He proposes a way to incrementally add features that are dependent on related documents and in a step-wise manner. In another experiment, the algorithm learns the additional dependent features thereby reducing the noise of the features. As a result, the latter experiment shows better performance in terms of measurement than the former experiment does.

Accuracy Assessment of the Satellite-based IMERG's Monthly Rainfall Data in the Inland Region of Korea (한반도 육상지역에서의 위성기반 IMERG 월 강수 관측 자료의 정확도 평가)

  • Ryu, Sumin;Hong, Sungwook
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • Rainfall is one of the most important meteorological variables in meteorology, agriculture, hydrology, natural disaster, construction, and architecture. Recently, satellite remote sensing is essential to the accurate detection, estimation, and prediction of rainfall. In this study, the accuracy of Integrated Multi-satellite Retrievals for GPM (IMERG) product, a composite rainfall information based on Global Precipitation Measurement (GPM) satellite was evaluated with ground observation data in the inland of Korea. The Automatic Weather Station (AWS)-based rainfall measurement data were used for validation. The IMERG and AWS rainfall data were collocated and compared during one year from January 1, 2016 to December 31, 2016. The coastal regions and islands were also evaluated irrespective of the well-known uncertainty of satellite-based rainfall data. Consequently, the IMERG data showed a high correlation (0.95) and low error statistics of Bias (15.08 mm/mon) and RMSE (30.32 mm/mon) in comparison to AWS observations. In coastal regions and islands, the IMERG data have a high correlation more than 0.7 as well as inland regions, and the reliability of IMERG data was verified as rainfall data.

A Study on Digital Healthcare Optometry System Using Optometry DB

  • Kim, Do-Yeon;Jung, Jin-Young;Kim, Yong-Man;Park, Koo-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.155-166
    • /
    • 2021
  • Recently, digital health care technology is spreading and developing in various fields. Therefore, in this paper, we realized that the field to which digital healthcare technology is not applied is the field of optometry, and implemented a digital healthcare optometry system for precise lens manufacturing. A device called Phoroptor is used to manufacture the lens, and this device sets the lens by measuring the visual acuity of the person who requested the glasses. And when the person to be measured wears glasses, a device called a PD meter is used to align the pupil center and lens focus. However, there is a limit to the convenience of precise lens production and optometry due to the absence of a database and program that can accumulate and analyze the PD measurement error, inconvenience and error due to manual control of the Phoroptor, and optometric information. Therefore, in this paper, PD meter design for more accurate PD measurement, Phoroptor design and Phoroptor control application design for automatic Phoroptor control, and a database and analysis program that automatically set lenses using optometry information for each subject had been designed. Based on this, ultimately, a digital healthcare optometry system using an optometry database has been implemented.

Estimation Method of the Amount of Demolition Waste through Automated Calculation of Volumetric Spaces using Drones (드론 활용 체적산출 자동화를 통한 해체 폐기물량 예측기법에 관한 연구)

  • Ryu, Jung-Rim;Kim, Hye-Ri;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.681-688
    • /
    • 2022
  • In this study, the process of drone photography, automatic volume calculation, total floor area conversion, and waste calculation was constructed as a QGIS plug-in to predict the demolition waste (DW) generated in an aged area where drawing information or building information is uncertain. Through a case study, the high consistency between the automatically calculated volume using the drone and the BIM volume based on the field measurement was confirmed. Field application was carried out for the planned demolition work site, and the consistency between the drone-based volume and the actual measurement-BIM-based volume was reconfirmed. The waste generation unit was applied and the amount of DW was calculated by setting the floor height and building type, and the entire process was completed within 6 hours. Although the difference between building information and building objects through drones occurred according to the setting of temporary structures, loads, and floor heights, it was found that the actual amount of DW was generated more than the initial estimate. It is expected that measures to improve the accuracy of volume and floor area conversion will be required through case studies in the future.

Implementation of Air Pollutant Monitoring System using UAV with Automatic Navigation Flight

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a system for monitoring air pollutants such as fine dust using an unmanned aerial vehicle capable of autonomous navigation. The existing air quality management system used a method of collecting information through a fixed sensor box or through a measurement sensor of a drone using a control device. This has disadvantages in that additional procedures for data collection and transmission must be performed in a limited space and for monitoring. In this paper, to overcome this problem, a GPS module for location information and a PMS7003 module for fine dust measurement are embedded in an unmanned aerial vehicle capable of autonomous navigation through flight information designation, and the collected information is stored in the SD module, and after the flight is completed, press the transmit button. It configures a system of one-stop structure that is stored in a remote database through a smartphone app connected via Bluetooth. In addition, an HTML5-based web monitoring page for real-time monitoring is configured and provided to interested users. The results of this study can be utilized in an environmental monitoring system through an unmanned aerial vehicle, and in the future, various pollutants measuring sensors such as sulfur dioxide and carbon dioxide will be added to develop it into a total environmental control system.

Autonomous Navigation Power Wheelchair Using Distance Measurement Sensors and Fuzzy Control (거리측정 센서 스캐닝과 퍼지 제어를 이용한 전동 휠체어 자율주행 시스템)

  • Kim, Kuk-Se;Yang, Sang-Gi;Rasheed, M. Tahir;Ahn, Seong-Soo;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.329-336
    • /
    • 2008
  • Nowadays with advancement in technology and aging society, the number of disabled citizens is increasing. The disabled citizens always need a caretaker for daily life routines especially for mobility. In future, the need is considered to increase more. To reduce the burden from the disabled, various devices for healthcare are introduced using computer technology. The power wheelchair is an important and convenient mobility device. The demand of power wheelchair is increasing for assistance in mobility. In this paper we proposed a robotic wheelchair for mobility aid to reduce the burden from the disabled. The main issue in an autonomous wheelchair is the automatic detection and avoidance of obstacles and going to the pre-designated place. The proposed algorithm detects the obstacles and avoids them to drive the wheelchair to the desired place safely. By this way, the disabled will not always have to worry about paying deep attention to the surroundings and his path.

  • PDF

An Positioning Error Analysis of 3D Face Recognition Apparatus (3차원 안면자동인식기의 Positioning 오차분석)

  • Kwak, Chang-Kyu;Cho, Yong-Beum;Sohn, Eun-Hae;Yoo, Jung-Hee;Kho, Byung-Hee;Kim, Jong-Won;Kim, Kyu-Kon;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.2
    • /
    • pp.34-40
    • /
    • 2006
  • 1. Objectives We are going to develope 3D Face Recognition Apparatus to analyse the facial characteristics of the Sasangin. In the process, we should identify the recognition rate of the three dimensional position using this Apparatus. 2. Methods We took a photograph of calibrator($280{\times}400mm$) with interval of 20mm longitudinal direction of 10 times using 3D Face Recognition Apparatus. In the practice, we obtained 967 point to the exclusion of points deviating from the visual field of dual camera. And we made a comparison between measurement values and three dimensional standard values to calculate the errors. 3. Results and Conclusions In this test, the average error rate of X axis values was 0.019% and the maximum error rate of X axis values was 0.033%, the average error rate of Y axis values was 0.025% and the maximum error rate of Y axis values was 0.044%, the average error rate of Z axis values was 0.158% and the maximum error rate of Z axis values was 0.269%. This results exhibit much improvement upon the average error rate 1% and the maximum error rate 2.242% of the existing 3D Recognition Apparatus. In conclusion, we assessed that this apparatus was adaptable to abstract the facial characteristic point from three dimensional face shape in the mechanical aspects.

  • PDF

Water Saving Irrigation Manual of House Red Pepper for the Northern Region of Korea (우리나라 북부권역 시설재배 고추의 물절약형 관개 기준 설정 연구)

  • Eom, Ki-Cheol;Park, So-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.312-316
    • /
    • 2012
  • Very important factor for crop cultivation are water, nutrient and temperature. However, the essential factor for crop cultivation is water management. Water management is the most important and difficult problems in crop cultivation. The water saving irrigation manual can be used with easy to the farmer and who want automatic irrigation without soil sampling and any kinds of sensors measuring soil water status. The water requirement of red pepper cultivated in plastic film house is different according to soil texture, area as well as climate condition and growth stage. And, the measurement of potential evapo-transpiration (PET) and crop coefficient (Kc) to decide optimum irrigation schedule is very difficult. Results : The average PET during 30 years of northern region of korea for the red pepper cultivation was a $2.31mm\;day^{-1}$. The water saving irrigation manual as water saving is possible, those irrigation interval and amount of irrigation according to growing season and soil texture, are developed using the lysimeter experiments carried out by the RDA for 11 years about potential evapo-transpiration, Kc for the northern region of korea.

The Measurement and Prediction of Combustible Properties of Dimethylacetamide (DMAc) (디메틸아세트아미드(DMAc)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.553-556
    • /
    • 2015
  • The usage of the correct combustion characteristic of the treated substance for the safety of the process is critical. For the safe handling of dimethylacetamide (DMAc) being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of DMAc was experimented. And, the lower explosion limit of DMAc was calculated by using the lower flash point obtained in the experiment. The flash points of DMAc by using the Setaflash and Pensky-Martens closed-cup testers measured $61^{\circ}C$ and $65^{\circ}C$, respectively. The flash points of DMAc by using the Tag and Cleveland automatic open cup testers are measured $68^{\circ}C$ and $71^{\circ}C$. The AIT of DMAc by ASTM 659E tester was measured as $347^{\circ}C$. The lower explosion limit by the measured flash point $61^{\circ}C$ was calculated as 1.52 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.