• 제목/요약/키워드: Automatic Machine Learning

검색결과 298건 처리시간 0.027초

스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법 (CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images)

  • 강경원;이경민
    • 융합신호처리학회논문지
    • /
    • 제21권3호
    • /
    • pp.121-126
    • /
    • 2020
  • 소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 딥러닝 기반 이미지 분류 문제로 해결하고자 한다. 본 논문에서 스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법을 제안한다. 제안한 방법은 기계의 결함 시 발생하는 주파수상의 특징 벡터를 효과적으로 추출하기 위해 STFT를 사용하였으며, STFT에 의해 검출된 특징 벡터들은 스펙트로그램 이미지로 변환하여 CNN을 이용해 기계의 상태별로 분류한다. 그 결과는 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있다.

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • 한국멀티미디어학회논문지
    • /
    • 제13권12호
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

Automatic Classification of Drone Images Using Deep Learning and SVM with Multiple Grid Sizes

  • Kim, Sun Woong;Kang, Min Soo;Song, Junyoung;Park, Wan Yong;Eo, Yang Dam;Pyeon, Mu Wook
    • 한국측량학회지
    • /
    • 제38권5호
    • /
    • pp.407-414
    • /
    • 2020
  • SVM (Support vector machine) analysis was performed after applying a deep learning technique based on an Inception-based model (GoogLeNet). The accuracy of automatic image classification was analyzed using an SVM with multiple virtual grid sizes. Six classes were selected from a standard land cover map. Cars were added as a separate item to increase the classification accuracy of roads. The virtual grid size was 2-5 m for natural areas, 5-10 m for traffic areas, and 10-15 m for building areas, based on the size of items and the resolution of input images. The results demonstrate that automatic classification accuracy can be increased by adopting an integrated approach that utilizes weighted virtual grid sizes for different classes.

Applying Token Tagging to Augment Dataset for Automatic Program Repair

  • Hu, Huimin;Lee, Byungjeong
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.628-636
    • /
    • 2022
  • Automatic program repair (APR) techniques focus on automatically repairing bugs in programs and providing correct patches for developers, which have been investigated for decades. However, most studies have limitations in repairing complex bugs. To overcome these limitations, we developed an approach that augments datasets by utilizing token tagging and applying machine learning techniques for APR. First, to alleviate the data insufficiency problem, we augmented datasets by extracting all the methods (buggy and non-buggy methods) in the program source code and conducting token tagging on non-buggy methods. Second, we fed the preprocessed code into the model as an input for training. Finally, we evaluated the performance of the proposed approach by comparing it with the baselines. The results show that the proposed approach is efficient for augmenting datasets using token tagging and is promising for APR.

전이학습 기반 기계번역 사후교정 모델 검증 (The Verification of the Transfer Learning-based Automatic Post Editing Model)

  • 문현석;박찬준;어수경;서재형;임희석
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.27-35
    • /
    • 2021
  • 기계번역 사후교정 (Automatic Post Editing, APE)이란 번역 시스템을 통해 생성한 번역문을 교정하는 연구 분야로, 영어-독일어와 같이 학습데이터가 풍부한 언어쌍을 중심으로 연구가 진행되고 있다. 최근 APE 연구는 전이학습 기반 연구가 주로 이루어지는데, 일반적으로 self supervised learning을 통해 생성된 사전학습 언어모델 혹은 번역모델이 주로 활용된다. 기존 연구에서는 번역모델에 전이학습 시킨 APE모델이 뛰어난 성과를 보였으나, 대용량 언어쌍에 대해서만 이루어진 해당 연구를 저 자원 언어쌍에 곧바로 적용하기는 어렵다. 이에 본 연구에서는 언어 혹은 번역모델의 두 가지 전이학습 전략을 대표적인 저 자원 언어쌍인 한국어-영어 APE 연구에 적용하여 심층적인 모델 검증을 진행하였다. 실험결과 저 자원 언어쌍에서도 APE 학습 이전에 번역을 한차례 학습시키는 것이 유의미하게 APE 성능을 향상시킨다는 것을 확인할 수 있었다.

기계학습에 기초한 국내 학술지 논문의 자동분류에 관한 연구 (An Analytical Study on Automatic Classification of Domestic Journal articles Based on Machine Learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제35권2호
    • /
    • pp.37-62
    • /
    • 2018
  • 문헌정보학 분야의 국내 학술지 논문으로 구성된 문헌집합을 대상으로 기계학습에 기초한 자동분류의 성능에 영향을 미치는 요소들을 검토하였다. 특히, "정보관리학회지"에 수록된 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 용어 가중치부여 기법, 학습집합 크기, 분류 알고리즘, 범주 할당 방법 등 주요 요소들의 특성을 다각적인 실험을 통해 살펴보았다. 결과적으로 분류 환경 및 문헌집합의 특성에 따라 각 요소를 적절하게 적용하는 것이 효과적이며, 보다 단순한 모델의 사용으로 상당히 좋은 수준의 성능을 도출할 수 있었다. 또한, 국내 학술지 논문의 분류는 특정 논문에 하나 이상의 범주를 할당하는 복수-범주 분류(multi-label classification)가 실제 환경에 부합한다고 할 수 있다. 따라서 이러한 환경을 고려하여 단순하고 빠른 분류 알고리즘과 소규모의 학습집합을 사용하는 최적의 분류 모델을 제안하였다.

투표 기반 서술형 주관식 답안 자동 채점 모델의 설계 및 구현 (Design and Implementation of an Automatic Scoring Model Using a Voting Method for Descriptive Answers)

  • 허정만;박소영
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.17-25
    • /
    • 2013
  • 본 논문에서는 투표기법을 이용하여 서술형 주관식 문제에 대한 학습자 답안을 자동으로 채점하는 모델을 제안한다. 제안하는 방법은 모델 구축 비용을 줄이기 위해서, 문제 유형별로 세분화하여 서술형 주관식 답안 자동 채점 모델을 따로 구축하지 않는다. 제안하는 방법은 서술형 주관식 답안 자동 채점에 유용한 자질을 추출하기 위해서, 모범 답안과 학습자 답안을 비교한 결과를 바탕으로 다양한 자질을 추출한다. 제안하는 방법은 답안 채점 결과의 신뢰성을 높이기 위해서, 각 학습자 답안을 여러 기계학습 기반 분류기를 이용하여 채점하고, 각 채점 결과를 투표하여 만장일치로 선택한 채점 결과를 최종 채점 결과로 결정한다. 실험결과 기계학습 기반 분류기 C4.5만 사용한 채점 결과는 정확률이 83.00%인데 반해, 기계학습 기반 분류기 C4.5, ME, SVM에서 만장일치로 선택한 채점 결과는 정확률이 90.57%까지 개선되었다.

머신러닝 기반의 영상 자동 편집 방법 및 시스템 (Video Automatic Editing Method and System based on Machine Learning)

  • 이승환;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.235-237
    • /
    • 2022
  • 영상 콘텐츠는, 길이에 따라 롱폼 영상 콘텐츠와 숏폼 영상 콘텐츠로 구분된다. 롱폼 영상 콘텐츠는 15분 이상 길이로 생성되며, 편집 없이 촬영 영상의 모든 프레임들이 포함되도록 한다. 숏폼 영상 콘텐츠는 1분이상 15분 이내로, 촬영 영상의 프레임들로부터 일부 프레임만 짧은 길이로 편집할 수 있다. 최근 1인 방송 시장의 성장으로 인하여, 시청자들을 늘리기 위한 숏폼 영상 콘텐츠에 대한 수요가 확대되고 있다. 따라서, 숏폼 영상 콘텐츠를 편집하여 생성하는 콘텐츠 편집 기술에 대한 연구가 필요하다. 본 연구는 영상, 음성, 동작을 포착하여 주요 장면의 숏폼 동영상을 생성하는 기술을 연구한다. 주요 장면의 숏폼 동영상은 머신 러닝을 통해 미리 학습된 하이라이트 추출 모델을 이용한다. 하이라이트 영상을 자동으로 생성하는 영상 자동 편집 시스템 및 방법은 숏폼 영상 콘텐츠의 핵심 기술이다. 머신러닝 기반의 영상 자동 편집 방법 및 시스템 연구는 1인 크리에이터들의 영상 편집에 투입되는 노력과 비용시간을 감소시켜, 경쟁력있는 콘텐츠 활동을 할 수 있도록 기여할 것이다.

  • PDF

문서 자동 분류기의 구현을 위한 문서 학습 방법에 관한 연구 (A Study on the Learning Method of Documents for Implementation of Automated Documents Classificator)

  • 선복근;이인정;한광록
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1001-1004
    • /
    • 1999
  • We study on machine learning method for automatic document categorization using back propagation algorithm. Four categories are classified for the experiment and the system learns with 20 documents per a category by this method. As a result of the machine learning, we can find that a new document is automatically classified with a category according to the predefined ones.

  • PDF

Estimation of Automatic Video Captioning in Real Applications using Machine Learning Techniques and Convolutional Neural Network

  • Vaishnavi, J;Narmatha, V
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.316-326
    • /
    • 2022
  • The prompt development in the field of video is the outbreak of online services which replaces the television media within a shorter period in gaining popularity. The online videos are encouraged more in use due to the captions displayed along with the scenes for better understandability. Not only entertainment media but other marketing companies and organizations are utilizing videos along with captions for their product promotions. The need for captions is enabled for its usage in many ways for hearing impaired and non-native people. Research is continued in an automatic display of the appropriate messages for the videos uploaded in shows, movies, educational videos, online classes, websites, etc. This paper focuses on two concerns namely the first part dealing with the machine learning method for preprocessing the videos into frames and resizing, the resized frames are classified into multiple actions after feature extraction. For the feature extraction statistical method, GLCM and Hu moments are used. The second part deals with the deep learning method where the CNN architecture is used to acquire the results. Finally both the results are compared to find the best accuracy where CNN proves to give top accuracy of 96.10% in classification.